
Computer-assisted analyses and design of optimization

methods: personal summary and perspectives

Adrien Taylor

PEP-talks — 2023

Thanks to the organizers!

1

François
Glineur

Julien
Hendrickx

Etienne
de Klerk

Ernest
Ryu

Carolina
Bergeling

Pontus
Giselsson

Francis
Bach

Jérôme
Bolte

Yoel
Drori

Alexandre
d’Aspremont

Mathieu
Barré

Radu
Dragomir

Bryan
Van Scoy

Laurent
Lessard

Céline
Moucer

Baptiste
Goujaud

Aymeric
Dieuleveut

Shuvomoy
Das Gupta

Robert
Freund Andy X.

Sun

Eduard
Gorbunov

Samuel
Horvath

Gauthier
Gidel Manu

Upadhyaya

Sebastian
Banert 2

Overview of this talk

� PEPs: quick recap, problem formulation, notations,

� PEPs: learning outcomes,

� notions of simplicity (for proofs and worst-case examples),

� creating new methods.

3

Overview of this talk

� PEPs: quick recap, problem formulation, notations,

� PEPs: learning outcomes,

� notions of simplicity (for proofs and worst-case examples),

� creating new methods.

3

Overview of this talk

� PEPs: quick recap, problem formulation, notations,

� PEPs: learning outcomes,

� notions of simplicity (for proofs and worst-case examples),

� creating new methods.

3

Overview of this talk

� PEPs: quick recap, problem formulation, notations,

� PEPs: learning outcomes,

� notions of simplicity (for proofs and worst-case examples),

� creating new methods.

3

Please contribute!

� Put your examples/contributions in one of the packages!
− in Matlab: PESTO,
− in Python: PEPit.

� Don’t hesitate to use/contribute to “learning PEPs”:
− Learning-Performance-Estimation.

� We are happy to treat your pull requests!

4

https://github.com/PerformanceEstimation/Performance-Estimation-Toolbox
https://pepit.readthedocs.io/en/0.2.1/
https://github.com/PerformanceEstimation/Learning-Performance-Estimation

Genealogy (“my humble, biased, view on...”)

Base methodological developments:

’14 Drori and Teboulle: upper bounds on worst-case behaviors of FO methods via
SDP. Problems scale with number of iterations (NxN SDP matrices).

’16 Kim and Fessler: design of an optimized method for smooth convex
minimization, using SDPs.

’16 Lessard, Recht, Packard: smaller SDPs for linear convergence, via integral
quadratic constraints (“IQCs”). Essentially Lyapunov functions.

This presentation: mainly points of view from

’17 T, Hendrickx and Glineur: “principled formulations” + tightness (via
interpolation/extensions).

’19 T, Bach: potential functions. Essentially: try to “force” simpler proofs.

’20, ’22 Drori, T: Constructive approaches to optimal first-order methods.

5

Genealogy (“my humble, biased, view on...”)

Base methodological developments:
’14 Drori and Teboulle: upper bounds on worst-case behaviors of FO methods via

SDP. Problems scale with number of iterations (NxN SDP matrices).

’16 Kim and Fessler: design of an optimized method for smooth convex
minimization, using SDPs.

’16 Lessard, Recht, Packard: smaller SDPs for linear convergence, via integral
quadratic constraints (“IQCs”). Essentially Lyapunov functions.

This presentation: mainly points of view from

’17 T, Hendrickx and Glineur: “principled formulations” + tightness (via
interpolation/extensions).

’19 T, Bach: potential functions. Essentially: try to “force” simpler proofs.

’20, ’22 Drori, T: Constructive approaches to optimal first-order methods.

5

Genealogy (“my humble, biased, view on...”)

Base methodological developments:
’14 Drori and Teboulle: upper bounds on worst-case behaviors of FO methods via

SDP. Problems scale with number of iterations (NxN SDP matrices).

’16 Kim and Fessler: design of an optimized method for smooth convex
minimization, using SDPs.

’16 Lessard, Recht, Packard: smaller SDPs for linear convergence, via integral
quadratic constraints (“IQCs”). Essentially Lyapunov functions.

This presentation: mainly points of view from

’17 T, Hendrickx and Glineur: “principled formulations” + tightness (via
interpolation/extensions).

’19 T, Bach: potential functions. Essentially: try to “force” simpler proofs.

’20, ’22 Drori, T: Constructive approaches to optimal first-order methods.

5

Genealogy (“my humble, biased, view on...”)

Base methodological developments:
’14 Drori and Teboulle: upper bounds on worst-case behaviors of FO methods via

SDP. Problems scale with number of iterations (NxN SDP matrices).

’16 Kim and Fessler: design of an optimized method for smooth convex
minimization, using SDPs.

’16 Lessard, Recht, Packard: smaller SDPs for linear convergence, via integral
quadratic constraints (“IQCs”). Essentially Lyapunov functions.

This presentation: mainly points of view from

’17 T, Hendrickx and Glineur: “principled formulations” + tightness (via
interpolation/extensions).

’19 T, Bach: potential functions. Essentially: try to “force” simpler proofs.

’20, ’22 Drori, T: Constructive approaches to optimal first-order methods.

5

Genealogy (“my humble, biased, view on...”)

Base methodological developments:
’14 Drori and Teboulle: upper bounds on worst-case behaviors of FO methods via

SDP. Problems scale with number of iterations (NxN SDP matrices).

’16 Kim and Fessler: design of an optimized method for smooth convex
minimization, using SDPs.

’16 Lessard, Recht, Packard: smaller SDPs for linear convergence, via integral
quadratic constraints (“IQCs”). Essentially Lyapunov functions.

This presentation: mainly points of view from

’17 T, Hendrickx and Glineur: “principled formulations” + tightness (via
interpolation/extensions).

’19 T, Bach: potential functions. Essentially: try to “force” simpler proofs.

’20, ’22 Drori, T: Constructive approaches to optimal first-order methods.

5

Genealogy (“my humble, biased, view on...”)

Base methodological developments:
’14 Drori and Teboulle: upper bounds on worst-case behaviors of FO methods via

SDP. Problems scale with number of iterations (NxN SDP matrices).

’16 Kim and Fessler: design of an optimized method for smooth convex
minimization, using SDPs.

’16 Lessard, Recht, Packard: smaller SDPs for linear convergence, via integral
quadratic constraints (“IQCs”). Essentially Lyapunov functions.

This presentation: mainly points of view from

’17 T, Hendrickx and Glineur: “principled formulations” + tightness (via
interpolation/extensions).

’19 T, Bach: potential functions. Essentially: try to “force” simpler proofs.

’20, ’22 Drori, T: Constructive approaches to optimal first-order methods.

5

Genealogy (“my humble, biased, view on...”)

Base methodological developments:
’14 Drori and Teboulle: upper bounds on worst-case behaviors of FO methods via

SDP. Problems scale with number of iterations (NxN SDP matrices).

’16 Kim and Fessler: design of an optimized method for smooth convex
minimization, using SDPs.

’16 Lessard, Recht, Packard: smaller SDPs for linear convergence, via integral
quadratic constraints (“IQCs”). Essentially Lyapunov functions.

This presentation: mainly points of view from

’17 T, Hendrickx and Glineur: “principled formulations” + tightness (via
interpolation/extensions).

’19 T, Bach: potential functions. Essentially: try to “force” simpler proofs.

’20, ’22 Drori, T: Constructive approaches to optimal first-order methods.

5

Genealogy (“my humble, biased, view on...”)

Base methodological developments:
’14 Drori and Teboulle: upper bounds on worst-case behaviors of FO methods via

SDP. Problems scale with number of iterations (NxN SDP matrices).

’16 Kim and Fessler: design of an optimized method for smooth convex
minimization, using SDPs.

’16 Lessard, Recht, Packard: smaller SDPs for linear convergence, via integral
quadratic constraints (“IQCs”). Essentially Lyapunov functions.

This presentation: mainly points of view from

’17 T, Hendrickx and Glineur: “principled formulations” + tightness (via
interpolation/extensions).

’19 T, Bach: potential functions. Essentially: try to “force” simpler proofs.

’20, ’22 Drori, T: Constructive approaches to optimal first-order methods.

5

Example: analysis of a gradient method

Find x? ∈ Rd such that

f (x?) = min
x∈Rd

f (x),

with f ∈ Fµ,L (L-smooth µ-strongly convex).

(Gradient method) We decide to use: xk+1 = xk − γk∇f (xk)

Question: what a priori guarantees after N iterations?

Examples: what about f (xN)− f (x?), ‖∇f (xN)‖, ‖xN − x?‖?

6

Example: analysis of a gradient method

Find x? ∈ Rd such that

f (x?) = min
x∈Rd

f (x),

with f ∈ Fµ,L (L-smooth µ-strongly convex).

(Gradient method) We decide to use: xk+1 = xk − γk∇f (xk)

Question: what a priori guarantees after N iterations?

Examples: what about f (xN)− f (x?), ‖∇f (xN)‖, ‖xN − x?‖?

6

Example: analysis of a gradient method

Find x? ∈ Rd such that

f (x?) = min
x∈Rd

f (x),

with f ∈ Fµ,L (L-smooth µ-strongly convex).

(Gradient method) We decide to use: xk+1 = xk − γk∇f (xk)

Question: what a priori guarantees after N iterations?

Examples: what about f (xN)− f (x?), ‖∇f (xN)‖, ‖xN − x?‖?

6

Example: analysis of a gradient method

Find x? ∈ Rd such that

f (x?) = min
x∈Rd

f (x),

with f ∈ Fµ,L (L-smooth µ-strongly convex).

(Gradient method) We decide to use: xk+1 = xk − γk∇f (xk)

Question: what a priori guarantees after N iterations?

Examples: what about f (xN)− f (x?), ‖∇f (xN)‖, ‖xN − x?‖?

6

About the assumptions
Consider a differentiable function f : Rd → R, f is (µ-strongly) convex
and L-smooth iff ∀x , y ∈ Rd we have:

x

f

•

(1) (Convexity) f (x) > f (y) + 〈∇f (y), x − y〉,

(1b) (µ-strong convexity) f (x) > f (y) + 〈∇f (y), x − y〉+ µ
2 ‖x − y‖2,

(2) (L-smoothness) ‖∇f (x)−∇f (y)‖ 6 L‖x − y‖,

(2b) (L-smoothness) f (x) 6 f (y) + 〈∇f (y), x − y〉+ L
2‖x − y‖2.

7

About the assumptions
Consider a differentiable function f : Rd → R, f is (µ-strongly) convex
and L-smooth iff ∀x , y ∈ Rd we have:

x

f

•

(1) (Convexity) f (x) > f (y) + 〈∇f (y), x − y〉,

(1b) (µ-strong convexity) f (x) > f (y) + 〈∇f (y), x − y〉+ µ
2 ‖x − y‖2,

(2) (L-smoothness) ‖∇f (x)−∇f (y)‖ 6 L‖x − y‖,

(2b) (L-smoothness) f (x) 6 f (y) + 〈∇f (y), x − y〉+ L
2‖x − y‖2.

7

About the assumptions
Consider a differentiable function f : Rd → R, f is (µ-strongly) convex
and L-smooth iff ∀x , y ∈ Rd we have:

x

f

•

(1) (Convexity) f (x) > f (y) + 〈∇f (y), x − y〉,

(1b) (µ-strong convexity) f (x) > f (y) + 〈∇f (y), x − y〉+ µ
2 ‖x − y‖2,

(2) (L-smoothness) ‖∇f (x)−∇f (y)‖ 6 L‖x − y‖,

(2b) (L-smoothness) f (x) 6 f (y) + 〈∇f (y), x − y〉+ L
2‖x − y‖2.

7

About the assumptions
Consider a differentiable function f : Rd → R, f is (µ-strongly) convex
and L-smooth iff ∀x , y ∈ Rd we have:

x

f

•

(1) (Convexity) f (x) > f (y) + 〈∇f (y), x − y〉,

(1b) (µ-strong convexity) f (x) > f (y) + 〈∇f (y), x − y〉+ µ
2 ‖x − y‖2,

(2) (L-smoothness) ‖∇f (x)−∇f (y)‖ 6 L‖x − y‖,

(2b) (L-smoothness) f (x) 6 f (y) + 〈∇f (y), x − y〉+ L
2‖x − y‖2.

7

About the assumptions
Consider a differentiable function f : Rd → R, f is (µ-strongly) convex
and L-smooth iff ∀x , y ∈ Rd we have:

x

f

•

(1) (Convexity) f (x) > f (y) + 〈∇f (y), x − y〉,

(1b) (µ-strong convexity) f (x) > f (y) + 〈∇f (y), x − y〉+ µ
2 ‖x − y‖2,

(2) (L-smoothness) ‖∇f (x)−∇f (y)‖ 6 L‖x − y‖,

(2b) (L-smoothness) f (x) 6 f (y) + 〈∇f (y), x − y〉+ L
2‖x − y‖2.

7

About the assumptions
Consider a differentiable function f : Rd → R, f is (µ-strongly) convex
and L-smooth iff ∀x , y ∈ Rd we have:

x

f

•

(1) (Convexity) f (x) > f (y) + 〈∇f (y), x − y〉,

(1b) (µ-strong convexity) f (x) > f (y) + 〈∇f (y), x − y〉+ µ
2 ‖x − y‖2,

(2) (L-smoothness) ‖∇f (x)−∇f (y)‖ 6 L‖x − y‖,

(2b) (L-smoothness) f (x) 6 f (y) + 〈∇f (y), x − y〉+ L
2‖x − y‖2.

7

Convergence rate of a gradient step

'

&

$

%

Toy example: What is the smallest τ such that:

‖x1 − x?‖2 6 τ‖x0 − x?‖2,

for all

� L-smooth and µ-strongly convex function f (notation f ∈ Fµ,L),
� x0, and x1 generated by gradient step x1 = x0 − γ0∇f (x0),

� x? = argmin
x

f (x)?

First: let’s compute τ !

τ = max
f ,x0,x1,x?

‖x1 − x?‖2

‖x0 − x?‖2

s.t. f ∈ Fµ,L Functional class

x1 = x0 − γ0∇f (x0) Algorithm

∇f (x?) = 0 Optimality of x?

Variables: f , x0, x1, x?; parameters: µ, L, γ0.

8

Convergence rate of a gradient step'

&

$

%

Toy example: What is the smallest τ such that:

‖x1 − x?‖2 6 τ‖x0 − x?‖2,

for all
� L-smooth and µ-strongly convex function f (notation f ∈ Fµ,L),
� x0, and x1 generated by gradient step x1 = x0 − γ0∇f (x0),

� x? = argmin
x

f (x)?

First: let’s compute τ !

τ = max
f ,x0,x1,x?

‖x1 − x?‖2

‖x0 − x?‖2

s.t. f ∈ Fµ,L Functional class

x1 = x0 − γ0∇f (x0) Algorithm

∇f (x?) = 0 Optimality of x?

Variables: f , x0, x1, x?; parameters: µ, L, γ0.

8

Convergence rate of a gradient step'

&

$

%

Toy example: What is the smallest τ such that:

‖x1 − x?‖2 6 τ‖x0 − x?‖2,

for all
� L-smooth and µ-strongly convex function f (notation f ∈ Fµ,L),
� x0, and x1 generated by gradient step x1 = x0 − γ0∇f (x0),

� x? = argmin
x

f (x)?

First: let’s compute τ !

τ = max
f ,x0,x1,x?

‖x1 − x?‖2

‖x0 − x?‖2

s.t. f ∈ Fµ,L Functional class

x1 = x0 − γ0∇f (x0) Algorithm

∇f (x?) = 0 Optimality of x?

Variables: f , x0, x1, x?; parameters: µ, L, γ0.

8

Convergence rate of a gradient step'

&

$

%

Toy example: What is the smallest τ such that:

‖x1 − x?‖2 6 τ‖x0 − x?‖2,

for all
� L-smooth and µ-strongly convex function f (notation f ∈ Fµ,L),
� x0, and x1 generated by gradient step x1 = x0 − γ0∇f (x0),

� x? = argmin
x

f (x)?

First: let’s compute τ !

τ = max
f ,x0,x1,x?

‖x1 − x?‖2

‖x0 − x?‖2

s.t. f ∈ Fµ,L Functional class

x1 = x0 − γ0∇f (x0) Algorithm

∇f (x?) = 0 Optimality of x?

Variables: f , x0, x1, x?; parameters: µ, L, γ0.

8

Convergence rate of a gradient step'

&

$

%

Toy example: What is the smallest τ such that:

‖x1 − x?‖2 6 τ‖x0 − x?‖2,

for all
� L-smooth and µ-strongly convex function f (notation f ∈ Fµ,L),
� x0, and x1 generated by gradient step x1 = x0 − γ0∇f (x0),

� x? = argmin
x

f (x)?

First: let’s compute τ !

τ = max
f ,x0,x1,x?

‖x1 − x?‖2

‖x0 − x?‖2

s.t. f ∈ Fµ,L Functional class

x1 = x0 − γ0∇f (x0) Algorithm

∇f (x?) = 0 Optimality of x?

Variables: f , x0, x1, x?; parameters: µ, L, γ0.

8

Sampled version

� Performance estimation problem:

max
f ,x0,x1,x?

‖x1 − x0‖2

‖x0 − x?‖2

subject to f is L-smooth and µ-strongly convex,

x1 = x0 − γ0∇f (x0)

∇f (x?) = 0.

� Variables: f , x0, x1, x?.

� Sampled version: f is only used at x0 and x? (no need to sample other points)

max
x0,x1,x?
g0,g?
f0,f?

‖x1 − x0‖2

‖x0 − x?‖2

subject to ∃f ∈ Fµ,L such that
{

fi = f (xi) i = 0, ?
gi = ∇f (xi) i = 0, ?

x1 = x0 − γ0g0

g? = 0.

� Variables: x0, x1, x?, g0, g?, f0, f?.

9

Sampled version
� Performance estimation problem:

max
f ,x0,x1,x?

‖x1 − x0‖2

‖x0 − x?‖2

subject to f is L-smooth and µ-strongly convex,

x1 = x0 − γ0∇f (x0)

∇f (x?) = 0.

� Variables: f , x0, x1, x?.

� Sampled version: f is only used at x0 and x? (no need to sample other points)

max
x0,x1,x?
g0,g?
f0,f?

‖x1 − x0‖2

‖x0 − x?‖2

subject to ∃f ∈ Fµ,L such that
{

fi = f (xi) i = 0, ?
gi = ∇f (xi) i = 0, ?

x1 = x0 − γ0g0

g? = 0.

� Variables: x0, x1, x?, g0, g?, f0, f?.

9

Sampled version
� Performance estimation problem:

max
f ,x0,x1,x?

‖x1 − x0‖2

‖x0 − x?‖2

subject to f is L-smooth and µ-strongly convex,

x1 = x0 − γ0∇f (x0)

∇f (x?) = 0.

� Variables: f , x0, x1, x?.

� Sampled version: f is only used at x0 and x? (no need to sample other points)

max
x0,x1,x?
g0,g?
f0,f?

‖x1 − x0‖2

‖x0 − x?‖2

subject to ∃f ∈ Fµ,L such that
{

fi = f (xi) i = 0, ?
gi = ∇f (xi) i = 0, ?

x1 = x0 − γ0g0

g? = 0.

� Variables: x0, x1, x?, g0, g?, f0, f?.

9

Sampled version
� Performance estimation problem:

max
f ,x0,x1,x?

‖x1 − x0‖2

‖x0 − x?‖2

subject to f is L-smooth and µ-strongly convex,

x1 = x0 − γ0∇f (x0)

∇f (x?) = 0.

� Variables: f , x0, x1, x?.
� Sampled version: f is only used at x0 and x? (no need to sample other points)

max
x0,x1,x?
g0,g?
f0,f?

‖x1 − x0‖2

‖x0 − x?‖2

subject to ∃f ∈ Fµ,L such that
{

fi = f (xi) i = 0, ?
gi = ∇f (xi) i = 0, ?

x1 = x0 − γ0g0

g? = 0.

� Variables: x0, x1, x?, g0, g?, f0, f?.

9

Sampled version
� Performance estimation problem:

max
f ,x0,x1,x?

‖x1 − x0‖2

‖x0 − x?‖2

subject to f is L-smooth and µ-strongly convex,

x1 = x0 − γ0∇f (x0)

∇f (x?) = 0.

� Variables: f , x0, x1, x?.
� Sampled version: f is only used at x0 and x? (no need to sample other points)

max
x0,x1,x?
g0,g?
f0,f?

‖x1 − x0‖2

‖x0 − x?‖2

subject to ∃f ∈ Fµ,L such that
{

fi = f (xi) i = 0, ?
gi = ∇f (xi) i = 0, ?

x1 = x0 − γ0g0

g? = 0.

� Variables: x0, x1, x?, g0, g?, f0, f?.

9

Sampled version
� Performance estimation problem:

max
f ,x0,x1,x?

‖x1 − x0‖2

‖x0 − x?‖2

subject to f is L-smooth and µ-strongly convex,

x1 = x0 − γ0∇f (x0)

∇f (x?) = 0.

� Variables: f , x0, x1, x?.
� Sampled version: f is only used at x0 and x? (no need to sample other points)

max
x0,x1,x?
g0,g?
f0,f?

‖x1 − x0‖2

‖x0 − x?‖2

subject to ∃f ∈ Fµ,L such that
{

fi = f (xi) i = 0, ?
gi = ∇f (xi) i = 0, ?

x1 = x0 − γ0g0

g? = 0.

� Variables: x0, x1, x?, g0, g?, f0, f?.

9

Smooth strongly convex interpolation (or extension)
Consider an index set S, and its associated values {(xi , gi , fi)}i∈S with coordinates xi ,
(sub)gradients gi and function values fi .

x

f

•
x0 •

x2

•
x1

? Possible to find f ∈ Fµ,L such that

f (xi) = fi , and gi ∈ ∂f (xi), ∀i ∈ S.

- Necessary and sufficient condition: ∀i , j ∈ S

fi > fj +
〈
gj , xi − xj

〉
+ 1

2L

∥∥gi − gj
∥∥2

+ µ
2(1−µ/L)

∥∥xi − xj − 1
L

(gi − gj)
∥∥2
.

- Simpler example: pick µ = 0 and L =∞ (just convexity):

fi > fj +
〈
gj , xi − xj

〉
.

10

Smooth strongly convex interpolation (or extension)
Consider an index set S, and its associated values {(xi , gi , fi)}i∈S with coordinates xi ,
(sub)gradients gi and function values fi .

x

f

•
x0 •

x2

•
x1

? Possible to find f ∈ Fµ,L such that

f (xi) = fi , and gi ∈ ∂f (xi), ∀i ∈ S.

- Necessary and sufficient condition: ∀i , j ∈ S

fi > fj +
〈
gj , xi − xj

〉
+ 1

2L

∥∥gi − gj
∥∥2

+ µ
2(1−µ/L)

∥∥xi − xj − 1
L

(gi − gj)
∥∥2
.

- Simpler example: pick µ = 0 and L =∞ (just convexity):

fi > fj +
〈
gj , xi − xj

〉
.

10

Smooth strongly convex interpolation (or extension)
Consider an index set S, and its associated values {(xi , gi , fi)}i∈S with coordinates xi ,
(sub)gradients gi and function values fi .

x

f

•
x0 •

x2

•
x1

? Possible to find f ∈ Fµ,L such that

f (xi) = fi , and gi ∈ ∂f (xi), ∀i ∈ S.

- Necessary and sufficient condition: ∀i , j ∈ S

fi > fj +
〈
gj , xi − xj

〉
+ 1

2L

∥∥gi − gj
∥∥2

+ µ
2(1−µ/L)

∥∥xi − xj − 1
L

(gi − gj)
∥∥2
.

- Simpler example: pick µ = 0 and L =∞ (just convexity):

fi > fj +
〈
gj , xi − xj

〉
.

10

Smooth strongly convex interpolation (or extension)
Consider an index set S, and its associated values {(xi , gi , fi)}i∈S with coordinates xi ,
(sub)gradients gi and function values fi .

x

f

•
x0 •

x2

•
x1

? Possible to find f ∈ Fµ,L such that

f (xi) = fi , and gi ∈ ∂f (xi), ∀i ∈ S.

- Necessary and sufficient condition: ∀i , j ∈ S

fi > fj +
〈
gj , xi − xj

〉
+ 1

2L

∥∥gi − gj
∥∥2

+ µ
2(1−µ/L)

∥∥xi − xj − 1
L

(gi − gj)
∥∥2
.

- Simpler example: pick µ = 0 and L =∞ (just convexity):

fi > fj +
〈
gj , xi − xj

〉
.

10

Replace constraints

� Interpolation conditions allow removing red constraints

max
x0,x1,x?
g0,g?
f0,f?

‖x1 − x?‖2

‖x0 − x?‖2

subject to ∃f ∈ Fµ,L such that
{

fi = f (xi) i = 0, ?
gi = ∇f (xi) i = 0, ?

x1 = x0 − γ0g0

g? = 0,

� replacing them by

f? > f0 + 〈g0, x? − x0〉+ 1
2L‖g? − g0‖2 + µ

2(1−µ/L)

∥∥x? − x0 − 1
L

(g? − g0)
∥∥2

f0 > f? + 〈g?, x0 − x?〉+ 1
2L‖g0 − g?‖2 + µ

2(1−µ/L)

∥∥x0 − x? − 1
L

(g0 − g?)
∥∥2
.

� Same optimal value (no relaxation); but still non-convex quadratic problem.

11

Replace constraints

� Interpolation conditions allow removing red constraints

max
x0,x1,x?
g0,g?
f0,f?

‖x1 − x?‖2

‖x0 − x?‖2

subject to ∃f ∈ Fµ,L such that
{

fi = f (xi) i = 0, ?
gi = ∇f (xi) i = 0, ?

x1 = x0 − γ0g0

g? = 0,

� replacing them by

f? > f0 + 〈g0, x? − x0〉+ 1
2L‖g? − g0‖2 + µ

2(1−µ/L)

∥∥x? − x0 − 1
L

(g? − g0)
∥∥2

f0 > f? + 〈g?, x0 − x?〉+ 1
2L‖g0 − g?‖2 + µ

2(1−µ/L)

∥∥x0 − x? − 1
L

(g0 − g?)
∥∥2
.

� Same optimal value (no relaxation); but still non-convex quadratic problem.

11

Replace constraints

� Interpolation conditions allow removing red constraints

max
x0,x1,x?
g0,g?
f0,f?

‖x1 − x?‖2

‖x0 − x?‖2

subject to ∃f ∈ Fµ,L such that
{

fi = f (xi) i = 0, ?
gi = ∇f (xi) i = 0, ?

x1 = x0 − γ0g0

g? = 0,

� replacing them by

f? > f0 + 〈g0, x? − x0〉+ 1
2L‖g? − g0‖2 + µ

2(1−µ/L)

∥∥x? − x0 − 1
L

(g? − g0)
∥∥2

f0 > f? + 〈g?, x0 − x?〉+ 1
2L‖g0 − g?‖2 + µ

2(1−µ/L)

∥∥x0 − x? − 1
L

(g0 − g?)
∥∥2
.

� Same optimal value (no relaxation); but still non-convex quadratic problem.

11

Replace constraints

� Interpolation conditions allow removing red constraints

max
x0,x1,x?
g0,g?
f0,f?

‖x1 − x?‖2

‖x0 − x?‖2

subject to ∃f ∈ Fµ,L such that
{

fi = f (xi) i = 0, ?
gi = ∇f (xi) i = 0, ?

x1 = x0 − γ0g0

g? = 0,

� replacing them by

f? > f0 + 〈g0, x? − x0〉+ 1
2L‖g? − g0‖2 + µ

2(1−µ/L)

∥∥x? − x0 − 1
L

(g? − g0)
∥∥2

f0 > f? + 〈g?, x0 − x?〉+ 1
2L‖g0 − g?‖2 + µ

2(1−µ/L)

∥∥x0 − x? − 1
L

(g0 − g?)
∥∥2
.

� Same optimal value (no relaxation); but still non-convex quadratic problem.

11

Semidefinite lifting

� Using the new variables G < 0 and F

G =

[
‖x0 − x?‖2 〈g0, x0 − x?〉
〈g0, x0 − x?〉 ‖g0‖2

]
, F = f0 − f?,

� previous problem can be reformulated as a 2× 2 SDP

max
G , F

G1,1 + γ2
0G2,2 − 2γ0G1,2

G1,1

subject to F + Lµ
2(L−µ)

G1,1 + 1
2(L−µ)

G2,2 − L
L−µG1,2 6 0

− F + Lµ
2(L−µ)

G1,1 + 1
2(L−µ)

G2,2 − µ
L−µG1,2 6 0

G1,1 = 1

G < 0,

(using an an homogeneity argument and substituting x1 and g?).

� Assuming x0, x?, g0 ∈ Rd with d > 2, same optimal value as original problem!

� For d = 1 same as original problem by adding rank(G) 6 1.

12

Semidefinite lifting

� Using the new variables G < 0 and F

G =

[
‖x0 − x?‖2 〈g0, x0 − x?〉
〈g0, x0 − x?〉 ‖g0‖2

]
, F = f0 − f?,

� previous problem can be reformulated as a 2× 2 SDP

max
G , F

G1,1 + γ2
0G2,2 − 2γ0G1,2

G1,1

subject to F + Lµ
2(L−µ)

G1,1 + 1
2(L−µ)

G2,2 − L
L−µG1,2 6 0

− F + Lµ
2(L−µ)

G1,1 + 1
2(L−µ)

G2,2 − µ
L−µG1,2 6 0

G1,1 = 1

G < 0,

(using an an homogeneity argument and substituting x1 and g?).

� Assuming x0, x?, g0 ∈ Rd with d > 2, same optimal value as original problem!

� For d = 1 same as original problem by adding rank(G) 6 1.

12

Semidefinite lifting

� Using the new variables G < 0 and F

G =

[
‖x0 − x?‖2 〈g0, x0 − x?〉
〈g0, x0 − x?〉 ‖g0‖2

]
, F = f0 − f?,

� previous problem can be reformulated as a 2× 2 SDP

max
G , F

G1,1 + γ2
0G2,2 − 2γ0G1,2

G1,1

subject to F + Lµ
2(L−µ)

G1,1 + 1
2(L−µ)

G2,2 − L
L−µG1,2 6 0

− F + Lµ
2(L−µ)

G1,1 + 1
2(L−µ)

G2,2 − µ
L−µG1,2 6 0

G1,1 = 1

G < 0,

(using an an homogeneity argument and substituting x1 and g?).

� Assuming x0, x?, g0 ∈ Rd with d > 2, same optimal value as original problem!

� For d = 1 same as original problem by adding rank(G) 6 1.

12

Semidefinite lifting

� Using the new variables G < 0 and F

G =

[
‖x0 − x?‖2 〈g0, x0 − x?〉
〈g0, x0 − x?〉 ‖g0‖2

]
, F = f0 − f?,

� previous problem can be reformulated as a 2× 2 SDP

max
G , F

G1,1 + γ2
0G2,2 − 2γ0G1,2

subject to F + Lµ
2(L−µ)

G1,1 + 1
2(L−µ)

G2,2 − L
L−µG1,2 6 0

− F + Lµ
2(L−µ)

G1,1 + 1
2(L−µ)

G2,2 − µ
L−µG1,2 6 0

G1,1 = 1

G < 0,

(using an an homogeneity argument and substituting x1 and g?).

� Assuming x0, x?, g0 ∈ Rd with d > 2, same optimal value as original problem!

� For d = 1 same as original problem by adding rank(G) 6 1.

12

Semidefinite lifting

� Using the new variables G < 0 and F

G =

[
‖x0 − x?‖2 〈g0, x0 − x?〉
〈g0, x0 − x?〉 ‖g0‖2

]
, F = f0 − f?,

� previous problem can be reformulated as a 2× 2 SDP

max
G , F

G1,1 + γ2
0G2,2 − 2γ0G1,2

subject to F + Lµ
2(L−µ)

G1,1 + 1
2(L−µ)

G2,2 − L
L−µG1,2 6 0

− F + Lµ
2(L−µ)

G1,1 + 1
2(L−µ)

G2,2 − µ
L−µG1,2 6 0

G1,1 = 1

G < 0,

(using an an homogeneity argument and substituting x1 and g?).

� Assuming x0, x?, g0 ∈ Rd with d > 2, same optimal value as original problem!

� For d = 1 same as original problem by adding rank(G) 6 1.

12

Semidefinite lifting

� Using the new variables G < 0 and F

G =

[
‖x0 − x?‖2 〈g0, x0 − x?〉
〈g0, x0 − x?〉 ‖g0‖2

]
, F = f0 − f?,

� previous problem can be reformulated as a 2× 2 SDP

max
G , F

G1,1 + γ2
0G2,2 − 2γ0G1,2

subject to F + Lµ
2(L−µ)

G1,1 + 1
2(L−µ)

G2,2 − L
L−µG1,2 6 0

− F + Lµ
2(L−µ)

G1,1 + 1
2(L−µ)

G2,2 − µ
L−µG1,2 6 0

G1,1 = 1

G < 0,

(using an an homogeneity argument and substituting x1 and g?).

� Assuming x0, x?, g0 ∈ Rd with d > 2, same optimal value as original problem!

� For d = 1 same as original problem by adding rank(G) 6 1.

12

Dual problem
� Dual problem is

min
τ,λ1,λ2>0

τ

subject to S =

[
τ − 1 + λ1Lµ

L−µ γ0 − λ1(µ+L)
2(L−µ)

γ0 − λ1(µ+L)
2(L−µ)

λ1
L−µ − γ

2
0

]
< 0

0 = λ1 − λ2.

� Weak duality: any dual feasible point ≡ valid worst-case convergence rate

(⇑).

� Direct consequence: for any τ > 0 we have#

"

!

‖x1 − x?‖2 6 τ‖x0 − x?‖2 for all f ∈ Fµ,L, all x0 ∈ Rd , all d ∈ N,
with x1 = x0 − γ0∇f (x0).~ww

∃λ > 0 :

[
τ − 1 + λLµ

L−µ γ0 − λ(µ+L)
2(L−µ)

γ0 − λ(µ+L)
2(L−µ)

λ
L−µ − γ

2
0

]
< 0

� Strong duality holds (existence of a Slater point): any valid worst-case
convergence rate ≡ valid dual feasible point (⇓)

: hence “m”

.

13

Dual problem
� Dual problem is

min
τ,λ1,λ2>0

τ

subject to S =

[
τ − 1 + λ1Lµ

L−µ γ0 − λ1(µ+L)
2(L−µ)

γ0 − λ1(µ+L)
2(L−µ)

λ1
L−µ − γ

2
0

]
< 0

0 = λ1 − λ2.

� Weak duality: any dual feasible point ≡ valid worst-case convergence rate

(⇑).
� Direct consequence: for any τ > 0 we have#

"

!

‖x1 − x?‖2 6 τ‖x0 − x?‖2 for all f ∈ Fµ,L, all x0 ∈ Rd , all d ∈ N,
with x1 = x0 − γ0∇f (x0).~ww

∃λ > 0 :

[
τ − 1 + λLµ

L−µ γ0 − λ(µ+L)
2(L−µ)

γ0 − λ(µ+L)
2(L−µ)

λ
L−µ − γ

2
0

]
< 0

� Strong duality holds (existence of a Slater point): any valid worst-case
convergence rate ≡ valid dual feasible point (⇓)

: hence “m”

.

13

Dual problem
� Dual problem is

min
τ,λ1,λ2>0

τ

subject to S =

[
τ − 1 + λ1Lµ

L−µ γ0 − λ1(µ+L)
2(L−µ)

γ0 − λ1(µ+L)
2(L−µ)

λ1
L−µ − γ

2
0

]
< 0

0 = λ1 − λ2.

� Weak duality: any dual feasible point ≡ valid worst-case convergence rate

(⇑).

� Direct consequence: for any τ > 0 we have#

"

!

‖x1 − x?‖2 6 τ‖x0 − x?‖2 for all f ∈ Fµ,L, all x0 ∈ Rd , all d ∈ N,
with x1 = x0 − γ0∇f (x0).~ww

∃λ > 0 :

[
τ − 1 + λLµ

L−µ γ0 − λ(µ+L)
2(L−µ)

γ0 − λ(µ+L)
2(L−µ)

λ
L−µ − γ

2
0

]
< 0

� Strong duality holds (existence of a Slater point): any valid worst-case
convergence rate ≡ valid dual feasible point (⇓)

: hence “m”

.

13

Dual problem
� Dual problem is

min
τ,λ1,λ2>0

τ

subject to S =

[
τ − 1 + λ1Lµ

L−µ γ0 − λ1(µ+L)
2(L−µ)

γ0 − λ1(µ+L)
2(L−µ)

λ1
L−µ − γ

2
0

]
< 0

0 = λ1 − λ2.

� Weak duality: any dual feasible point ≡ valid worst-case convergence rate (⇑).
� Direct consequence: for any τ > 0 we have#

"

!

‖x1 − x?‖2 6 τ‖x0 − x?‖2 for all f ∈ Fµ,L, all x0 ∈ Rd , all d ∈ N,
with x1 = x0 − γ0∇f (x0).~ww

∃λ > 0 :

[
τ − 1 + λLµ

L−µ γ0 − λ(µ+L)
2(L−µ)

γ0 − λ(µ+L)
2(L−µ)

λ
L−µ − γ

2
0

]
< 0

� Strong duality holds (existence of a Slater point): any valid worst-case
convergence rate ≡ valid dual feasible point (⇓)

: hence “m”

.

13

Dual problem
� Dual problem is

min
τ,λ1,λ2>0

τ

subject to S =

[
τ − 1 + λ1Lµ

L−µ γ0 − λ1(µ+L)
2(L−µ)

γ0 − λ1(µ+L)
2(L−µ)

λ1
L−µ − γ

2
0

]
< 0

0 = λ1 − λ2.

� Weak duality: any dual feasible point ≡ valid worst-case convergence rate (⇑).
� Direct consequence: for any τ > 0 we have#

"

!

‖x1 − x?‖2 6 τ‖x0 − x?‖2 for all f ∈ Fµ,L, all x0 ∈ Rd , all d ∈ N,
with x1 = x0 − γ0∇f (x0).~ww

∃λ > 0 :

[
τ − 1 + λLµ

L−µ γ0 − λ(µ+L)
2(L−µ)

γ0 − λ(µ+L)
2(L−µ)

λ
L−µ − γ

2
0

]
< 0

� Strong duality holds (existence of a Slater point): any valid worst-case
convergence rate ≡ valid dual feasible point (⇓)

: hence “m”

.

13

Dual problem
� Dual problem is

min
τ,λ1,λ2>0

τ

subject to S =

[
τ − 1 + λ1Lµ

L−µ γ0 − λ1(µ+L)
2(L−µ)

γ0 − λ1(µ+L)
2(L−µ)

λ1
L−µ − γ

2
0

]
< 0

0 = λ1 − λ2.

� Weak duality: any dual feasible point ≡ valid worst-case convergence rate (⇑).
� Direct consequence: for any τ > 0 we have#

"

!

‖x1 − x?‖2 6 τ‖x0 − x?‖2 for all f ∈ Fµ,L, all x0 ∈ Rd , all d ∈ N,
with x1 = x0 − γ0∇f (x0).~w�

∃λ > 0 :

[
τ − 1 + λLµ

L−µ γ0 − λ(µ+L)
2(L−µ)

γ0 − λ(µ+L)
2(L−µ)

λ
L−µ − γ

2
0

]
< 0

� Strong duality holds (existence of a Slater point): any valid worst-case
convergence rate ≡ valid dual feasible point (⇓) : hence “m”.

13

Translation to worst-case guarantees

� Summary: we can compute for the smallest τ(γ0) such that

‖x1 − x?‖2 6 τ(γ0)‖x0 − x?‖2

is satisfied for all x0 ∈ Rd , d ∈ N, f ∈ Fµ,L, and
x1 = x0 − γ0∇f (x0).

� Feasible points to SDP correspond to lower bounds on τ(γ0).

� Feasible points to dual SDP correspond to upper bounds on τ(γ0).

� Therefore:

− proof via linear combinations of interpolation inequalities
(evaluated at the iterates and x?),

− proofs can be rewritten as a “sum-of-squares” certificates.

14

Translation to worst-case guarantees

� Summary: we can compute for the smallest τ(γ0) such that

‖x1 − x?‖2 6 τ(γ0)‖x0 − x?‖2

is satisfied for all x0 ∈ Rd , d ∈ N, f ∈ Fµ,L, and
x1 = x0 − γ0∇f (x0).

� Feasible points to SDP correspond to lower bounds on τ(γ0).

� Feasible points to dual SDP correspond to upper bounds on τ(γ0).

� Therefore:

− proof via linear combinations of interpolation inequalities
(evaluated at the iterates and x?),

− proofs can be rewritten as a “sum-of-squares” certificates.

14

Translation to worst-case guarantees

� Summary: we can compute for the smallest τ(γ0) such that

‖x1 − x?‖2 6 τ(γ0)‖x0 − x?‖2

is satisfied for all x0 ∈ Rd , d ∈ N, f ∈ Fµ,L, and
x1 = x0 − γ0∇f (x0).

� Feasible points to SDP correspond to lower bounds on τ(γ0).

� Feasible points to dual SDP correspond to upper bounds on τ(γ0).

� Therefore:

− proof via linear combinations of interpolation inequalities
(evaluated at the iterates and x?),

− proofs can be rewritten as a “sum-of-squares” certificates.

14

Translation to worst-case guarantees

� Summary: we can compute for the smallest τ(γ0) such that

‖x1 − x?‖2 6 τ(γ0)‖x0 − x?‖2

is satisfied for all x0 ∈ Rd , d ∈ N, f ∈ Fµ,L, and
x1 = x0 − γ0∇f (x0).

� Feasible points to SDP correspond to lower bounds on τ(γ0).

� Feasible points to dual SDP correspond to upper bounds on τ(γ0).

� Therefore:

− proof via linear combinations of interpolation inequalities
(evaluated at the iterates and x?),

− proofs can be rewritten as a “sum-of-squares” certificates.

14

When does it work?

The methodology applies, as is, as soon as:

� performance measure and initial condition are linear in G ,

� interpolation inequalities are linear in G ,

� algorithm can be described linearly in G .

This applies to a variety of scenarios (as we discuss in the workshop).

� check PEPit and PESTO (currently more than 75 examples);

� add yours ,.

15

When does it work?

The methodology applies, as is, as soon as:

� performance measure and initial condition are linear in G ,

� interpolation inequalities are linear in G ,

� algorithm can be described linearly in G .

This applies to a variety of scenarios (as we discuss in the workshop).

� check PEPit and PESTO (currently more than 75 examples);

� add yours ,.

15

When does it work?

The methodology applies, as is, as soon as:

� performance measure and initial condition are linear in G ,

� interpolation inequalities are linear in G ,

� algorithm can be described linearly in G .

This applies to a variety of scenarios (as we discuss in the workshop).

� check PEPit and PESTO (currently more than 75 examples);

� add yours ,.

15

When does it work?

The methodology applies, as is, as soon as:

� performance measure and initial condition are linear in G ,

� interpolation inequalities are linear in G ,

� algorithm can be described linearly in G .

This applies to a variety of scenarios (as we discuss in the workshop).

� check PEPit and PESTO (currently more than 75 examples);

� add yours ,.

15

When does it work?

The methodology applies, as is, as soon as:

� performance measure and initial condition are linear in G ,

� interpolation inequalities are linear in G ,

� algorithm can be described linearly in G .

This applies to a variety of scenarios (as we discuss in the workshop).

� check PEPit and PESTO (currently more than 75 examples);

� add yours ,.

15

When does it work?

The methodology applies, as is, as soon as:

� performance measure and initial condition are linear in G ,

� interpolation inequalities are linear in G ,

� algorithm can be described linearly in G .

This applies to a variety of scenarios (as we discuss in the workshop).

� check PEPit and PESTO (currently more than 75 examples);

� add yours ,.

15

When does it work?

The methodology applies, as is, as soon as:

� performance measure and initial condition are linear in G ,

� interpolation inequalities are linear in G ,

� algorithm can be described linearly in G .

This applies to a variety of scenarios (as we discuss in the workshop).

� check PEPit and PESTO (currently more than 75 examples);

� add yours ,.

15

A few natural questions

� What happens if one ingredient is not “nice” in G?

− we can try convex relaxations,
− for instance: no interpolation condition:

add all inequalities you are aware of,
not necessarily evaluated only at the iterates and x?.

� Can we obtain “simple proofs” and worst-case examples?

� How to optimize the step sizes?

16

A few natural questions

� What happens if one ingredient is not “nice” in G?

− we can try convex relaxations,
− for instance: no interpolation condition:

add all inequalities you are aware of,
not necessarily evaluated only at the iterates and x?.

� Can we obtain “simple proofs” and worst-case examples?

� How to optimize the step sizes?

16

A few natural questions

� What happens if one ingredient is not “nice” in G?

− we can try convex relaxations,

− for instance: no interpolation condition:

add all inequalities you are aware of,
not necessarily evaluated only at the iterates and x?.

� Can we obtain “simple proofs” and worst-case examples?

� How to optimize the step sizes?

16

A few natural questions

� What happens if one ingredient is not “nice” in G?

− we can try convex relaxations,
− for instance: no interpolation condition:

add all inequalities you are aware of,
not necessarily evaluated only at the iterates and x?.

� Can we obtain “simple proofs” and worst-case examples?

� How to optimize the step sizes?

16

A few natural questions

� What happens if one ingredient is not “nice” in G?

− we can try convex relaxations,
− for instance: no interpolation condition:

add all inequalities you are aware of,

not necessarily evaluated only at the iterates and x?.

� Can we obtain “simple proofs” and worst-case examples?

� How to optimize the step sizes?

16

A few natural questions

� What happens if one ingredient is not “nice” in G?

− we can try convex relaxations,
− for instance: no interpolation condition:

add all inequalities you are aware of,
not necessarily evaluated only at the iterates and x?.

� Can we obtain “simple proofs” and worst-case examples?

� How to optimize the step sizes?

16

A few natural questions

� What happens if one ingredient is not “nice” in G?

− we can try convex relaxations,
− for instance: no interpolation condition:

add all inequalities you are aware of,
not necessarily evaluated only at the iterates and x?.

� Can we obtain “simple proofs” and worst-case examples?

� How to optimize the step sizes?

16

A few natural questions

� What happens if one ingredient is not “nice” in G?

− we can try convex relaxations,
− for instance: no interpolation condition:

add all inequalities you are aware of,
not necessarily evaluated only at the iterates and x?.

� Can we obtain “simple proofs” and worst-case examples?

� How to optimize the step sizes?

16

Recap’

, Worst-case guarantees cannot be improved, systematic approach,

, allows reaching proofs that could barely be obtained by hand,

, fair amount of scenarios/algorithms (e.g., proximal terms,
stochastic, etc.),

/ SDPs typically become prohibitively large in a variety of scenarios,

/ transient behavior VS. asymptotic behavior: might be hard to
distinguish with small N,

/ proofs (may be) quite involved and hard to intuit,

/ proofs (may be) hard to generalize.

17

Recap’

, Worst-case guarantees cannot be improved, systematic approach,

, allows reaching proofs that could barely be obtained by hand,

, fair amount of scenarios/algorithms (e.g., proximal terms,
stochastic, etc.),

/ SDPs typically become prohibitively large in a variety of scenarios,

/ transient behavior VS. asymptotic behavior: might be hard to
distinguish with small N,

/ proofs (may be) quite involved and hard to intuit,

/ proofs (may be) hard to generalize.

17

Recap’

, Worst-case guarantees cannot be improved, systematic approach,

, allows reaching proofs that could barely be obtained by hand,

, fair amount of scenarios/algorithms (e.g., proximal terms,
stochastic, etc.),

/ SDPs typically become prohibitively large in a variety of scenarios,

/ transient behavior VS. asymptotic behavior: might be hard to
distinguish with small N,

/ proofs (may be) quite involved and hard to intuit,

/ proofs (may be) hard to generalize.

17

Recap’

, Worst-case guarantees cannot be improved, systematic approach,

, allows reaching proofs that could barely be obtained by hand,

, fair amount of scenarios/algorithms (e.g., proximal terms,
stochastic, etc.),

/ SDPs typically become prohibitively large in a variety of scenarios,

/ transient behavior VS. asymptotic behavior: might be hard to
distinguish with small N,

/ proofs (may be) quite involved and hard to intuit,

/ proofs (may be) hard to generalize.

17

Recap’

, Worst-case guarantees cannot be improved, systematic approach,

, allows reaching proofs that could barely be obtained by hand,

, fair amount of scenarios/algorithms (e.g., proximal terms,
stochastic, etc.),

/ SDPs typically become prohibitively large in a variety of scenarios,

/ transient behavior VS. asymptotic behavior: might be hard to
distinguish with small N,

/ proofs (may be) quite involved and hard to intuit,

/ proofs (may be) hard to generalize.

17

Recap’

, Worst-case guarantees cannot be improved, systematic approach,

, allows reaching proofs that could barely be obtained by hand,

, fair amount of scenarios/algorithms (e.g., proximal terms,
stochastic, etc.),

/ SDPs typically become prohibitively large in a variety of scenarios,

/ transient behavior VS. asymptotic behavior: might be hard to
distinguish with small N,

/ proofs (may be) quite involved and hard to intuit,

/ proofs (may be) hard to generalize.

17

Recap’

, Worst-case guarantees cannot be improved, systematic approach,

, allows reaching proofs that could barely be obtained by hand,

, fair amount of scenarios/algorithms (e.g., proximal terms,
stochastic, etc.),

/ SDPs typically become prohibitively large in a variety of scenarios,

/ transient behavior VS. asymptotic behavior: might be hard to
distinguish with small N,

/ proofs (may be) quite involved and hard to intuit,

/ proofs (may be) hard to generalize.

17

Recap’

, Worst-case guarantees cannot be improved, systematic approach,

, allows reaching proofs that could barely be obtained by hand,

, fair amount of scenarios/algorithms (e.g., proximal terms,
stochastic, etc.),

/ SDPs typically become prohibitively large in a variety of scenarios,

/ transient behavior VS. asymptotic behavior: might be hard to
distinguish with small N,

/ proofs (may be) quite involved and hard to intuit,

/ proofs (may be) hard to generalize.

17

Reminders

Notions of simplicity

Designing methods

Concluding remarks

18

Simple counter-examples & proofs?

What is a simple counter-example?

� low-dimensional,
� “simple” closed-form?

What is a simple proof? Tentative answers:

� uses few inequalities,
� has few residual term (low-rank dual matrix),
� has a nice structure (e.g., recursive)?

19

Simple counter-examples & proofs?

What is a simple counter-example?
� low-dimensional,

� “simple” closed-form?

What is a simple proof? Tentative answers:

� uses few inequalities,
� has few residual term (low-rank dual matrix),
� has a nice structure (e.g., recursive)?

19

Simple counter-examples & proofs?

What is a simple counter-example?
� low-dimensional,
� “simple” closed-form?

What is a simple proof? Tentative answers:

� uses few inequalities,
� has few residual term (low-rank dual matrix),
� has a nice structure (e.g., recursive)?

19

Simple counter-examples & proofs?

What is a simple counter-example?
� low-dimensional,
� “simple” closed-form?

What is a simple proof? Tentative answers:

� uses few inequalities,
� has few residual term (low-rank dual matrix),
� has a nice structure (e.g., recursive)?

19

Simple counter-examples & proofs?

What is a simple counter-example?
� low-dimensional,
� “simple” closed-form?

What is a simple proof? Tentative answers:
� uses few inequalities,

� has few residual term (low-rank dual matrix),
� has a nice structure (e.g., recursive)?

19

Simple counter-examples & proofs?

What is a simple counter-example?
� low-dimensional,
� “simple” closed-form?

What is a simple proof? Tentative answers:
� uses few inequalities,
� has few residual term (low-rank dual matrix),

� has a nice structure (e.g., recursive)?

19

Simple counter-examples & proofs?

What is a simple counter-example?
� low-dimensional,
� “simple” closed-form?

What is a simple proof? Tentative answers:
� uses few inequalities,
� has few residual term (low-rank dual matrix),
� has a nice structure (e.g., recursive)?

19

Low-dimensional examples

Two tricks:

� minimize rank via trace heuristic: minimize Tr(G),
� minimize rank via logdet heuristic: minimize log det(G).

Examples in PEPit!

20

Low-dimensional examples

Two tricks:
� minimize rank via trace heuristic: minimize Tr(G),

� minimize rank via logdet heuristic: minimize log det(G).

Examples in PEPit!

20

Low-dimensional examples

Two tricks:
� minimize rank via trace heuristic: minimize Tr(G),
� minimize rank via logdet heuristic: minimize log det(G).

Examples in PEPit!

20

Low-dimensional examples

Two tricks:
� minimize rank via trace heuristic: minimize Tr(G),
� minimize rank via logdet heuristic: minimize log det(G).

Examples in PEPit!

20

Nice proof structure: Lyapunov/potential functions

Guarantees for gradient descent when minimizing an L-smooth convex function

f? = min
x∈Rd

f (x)?

Known that f (xN)− f? = O(1
N

) with small enough step sizes (e.g., 1
L
).

For all L-smooth convex f , xk ∈ Rd , and k > 0, easy to show φfk+1 6 φfk with

φfk = k(f (xk)− f?) + L
2‖xk − x?‖2 (potential at iteration k),

see e.g., (Bansal & Gupta 2017).

Why is that nice? Very simple resulting proof:

N(f (xN)− f?) 6 φfN 6 φfN−1 6 . . . 6 φf0 = L
2‖x0 − x?‖2,

hence: f (xN)− f? 6 L‖x0−x?‖2
2N .

21

Nice proof structure: Lyapunov/potential functions

Guarantees for gradient descent when minimizing an L-smooth convex function

f? = min
x∈Rd

f (x)?

Known that f (xN)− f? = O(1
N

) with small enough step sizes (e.g., 1
L
).

For all L-smooth convex f , xk ∈ Rd , and k > 0, easy to show φfk+1 6 φfk with

φfk = k(f (xk)− f?) + L
2‖xk − x?‖2 (potential at iteration k),

see e.g., (Bansal & Gupta 2017).

Why is that nice? Very simple resulting proof:

N(f (xN)− f?) 6 φfN 6 φfN−1 6 . . . 6 φf0 = L
2‖x0 − x?‖2,

hence: f (xN)− f? 6 L‖x0−x?‖2
2N .

21

Nice proof structure: Lyapunov/potential functions

Guarantees for gradient descent when minimizing an L-smooth convex function

f? = min
x∈Rd

f (x)?

Known that f (xN)− f? = O(1
N

) with small enough step sizes (e.g., 1
L
).

For all L-smooth convex f , xk ∈ Rd , and k > 0, easy to show φfk+1 6 φfk with

φfk = k(f (xk)− f?) + L
2‖xk − x?‖2 (potential at iteration k),

see e.g., (Bansal & Gupta 2017).

Why is that nice? Very simple resulting proof:

N(f (xN)− f?) 6 φfN 6 φfN−1 6 . . . 6 φf0 = L
2‖x0 − x?‖2,

hence: f (xN)− f? 6 L‖x0−x?‖2
2N .

21

Nice proof structure: Lyapunov/potential functions

Guarantees for gradient descent when minimizing an L-smooth convex function

f? = min
x∈Rd

f (x)?

Known that f (xN)− f? = O(1
N

) with small enough step sizes (e.g., 1
L
).

For all L-smooth convex f , xk ∈ Rd , and k > 0, easy to show φfk+1 6 φfk with

φfk = k(f (xk)− f?) + L
2‖xk − x?‖2 (potential at iteration k),

see e.g., (Bansal & Gupta 2017).

Why is that nice? Very simple resulting proof:

N(f (xN)− f?) 6 φfN 6 φfN−1 6 . . . 6 φf0 = L
2‖x0 − x?‖2,

hence: f (xN)− f? 6 L‖x0−x?‖2
2N .

21

Nice proof structure: Lyapunov/potential functions

Guarantees for gradient descent when minimizing an L-smooth convex function

f? = min
x∈Rd

f (x)?

Known that f (xN)− f? = O(1
N

) with small enough step sizes (e.g., 1
L
).

For all L-smooth convex f , xk ∈ Rd , and k > 0, easy to show φfk+1 6 φfk with

φfk = k(f (xk)− f?) + L
2‖xk − x?‖2 (potential at iteration k),

see e.g., (Bansal & Gupta 2017).

Why is that nice? Very simple resulting proof:

N(f (xN)− f?) 6

φfN 6 φfN−1 6 . . . 6 φf0

= L
2‖x0 − x?‖2,

hence: f (xN)− f? 6 L‖x0−x?‖2
2N .

21

Nice proof structure: Lyapunov/potential functions

Guarantees for gradient descent when minimizing an L-smooth convex function

f? = min
x∈Rd

f (x)?

Known that f (xN)− f? = O(1
N

) with small enough step sizes (e.g., 1
L
).

For all L-smooth convex f , xk ∈ Rd , and k > 0, easy to show φfk+1 6 φfk with

φfk = k(f (xk)− f?) + L
2‖xk − x?‖2 (potential at iteration k),

see e.g., (Bansal & Gupta 2017).

Why is that nice? Very simple resulting proof:

N(f (xN)− f?) 6 φfN 6 φfN−1 6 . . . 6 φf0

= L
2‖x0 − x?‖2,

hence: f (xN)− f? 6 L‖x0−x?‖2
2N .

21

Nice proof structure: Lyapunov/potential functions

Guarantees for gradient descent when minimizing an L-smooth convex function

f? = min
x∈Rd

f (x)?

Known that f (xN)− f? = O(1
N

) with small enough step sizes (e.g., 1
L
).

For all L-smooth convex f , xk ∈ Rd , and k > 0, easy to show φfk+1 6 φfk with

φfk = k(f (xk)− f?) + L
2‖xk − x?‖2 (potential at iteration k),

see e.g., (Bansal & Gupta 2017).

Why is that nice? Very simple resulting proof:

N(f (xN)− f?) 6 φfN 6 φfN−1 6 . . . 6 φf0 = L
2‖x0 − x?‖2,

hence: f (xN)− f? 6 L‖x0−x?‖2
2N .

21

Nice proof structure: Lyapunov/potential functions

Guarantees for gradient descent when minimizing an L-smooth convex function

f? = min
x∈Rd

f (x)?

Known that f (xN)− f? = O(1
N

) with small enough step sizes (e.g., 1
L
).

For all L-smooth convex f , xk ∈ Rd , and k > 0, easy to show φfk+1 6 φfk with

φfk = k(f (xk)− f?) + L
2‖xk − x?‖2 (potential at iteration k),

see e.g., (Bansal & Gupta 2017).

Why is that nice? Very simple resulting proof:

N(f (xN)− f?) 6 φfN 6 φfN−1 6 . . . 6 φf0 = L
2‖x0 − x?‖2,

hence: f (xN)− f? 6 L‖x0−x?‖2
2N .

21

How does it work for the gradient method?
Gradient descent, take II: how to bound ‖∇f (xN)‖2 using potentials?

Key idea: forget how xk was generated and prove φfk+1 6 φfk .

, only need to study one iteration

/ where does this φfk comes from!? (structure and dependence on k)

Starting point: candidate quadratic φfk with all the available information at iteration k

φfk = ak ‖xk − x?‖2 + bk ‖∇f (xk)‖2 + 2ck 〈∇f (xk), xk − x?〉+ dk (f (xk)− f?).

How to choose ak , bk , ck , dk ’s?

1. choice should satisfy “φfk+1 6 φfk ”,

2. choice should result in bound on ‖∇f (xN)‖2.

22

How does it work for the gradient method?
Gradient descent, take II: how to bound ‖∇f (xN)‖2 using potentials?

Key idea: forget how xk was generated and prove φfk+1 6 φfk .

, only need to study one iteration

/ where does this φfk comes from!? (structure and dependence on k)

Starting point: candidate quadratic φfk with all the available information at iteration k

φfk = ak ‖xk − x?‖2 + bk ‖∇f (xk)‖2 + 2ck 〈∇f (xk), xk − x?〉+ dk (f (xk)− f?).

How to choose ak , bk , ck , dk ’s?

1. choice should satisfy “φfk+1 6 φfk ”,

2. choice should result in bound on ‖∇f (xN)‖2.

22

How does it work for the gradient method?
Gradient descent, take II: how to bound ‖∇f (xN)‖2 using potentials?

Key idea: forget how xk was generated and prove φfk+1 6 φfk .

, only need to study one iteration

/ where does this φfk comes from!? (structure and dependence on k)

Starting point: candidate quadratic φfk with all the available information at iteration k

φfk = ak ‖xk − x?‖2 + bk ‖∇f (xk)‖2 + 2ck 〈∇f (xk), xk − x?〉+ dk (f (xk)− f?).

How to choose ak , bk , ck , dk ’s?

1. choice should satisfy “φfk+1 6 φfk ”,

2. choice should result in bound on ‖∇f (xN)‖2.

22

How does it work for the gradient method?
Gradient descent, take II: how to bound ‖∇f (xN)‖2 using potentials?

Key idea: forget how xk was generated and prove φfk+1 6 φfk .

, only need to study one iteration

/ where does this φfk comes from!? (structure and dependence on k)

Starting point: candidate quadratic φfk with all the available information at iteration k

φfk = ak ‖xk − x?‖2 + bk ‖∇f (xk)‖2 + 2ck 〈∇f (xk), xk − x?〉+ dk (f (xk)− f?).

How to choose ak , bk , ck , dk ’s?

1. choice should satisfy “φfk+1 6 φfk ”,

2. choice should result in bound on ‖∇f (xN)‖2.

22

How does it work for the gradient method?
Gradient descent, take II: how to bound ‖∇f (xN)‖2 using potentials?

Key idea: forget how xk was generated and prove φfk+1 6 φfk .

, only need to study one iteration

/ where does this φfk comes from!? (structure and dependence on k)

Starting point: candidate quadratic φfk with all the available information at iteration k

φfk = ak ‖xk − x?‖2 + bk ‖∇f (xk)‖2 + 2ck 〈∇f (xk), xk − x?〉+ dk (f (xk)− f?).

How to choose ak , bk , ck , dk ’s?

1. choice should satisfy “φfk+1 6 φfk ”,

2. choice should result in bound on ‖∇f (xN)‖2.

22

How does it work for the gradient method?
Gradient descent, take II: how to bound ‖∇f (xN)‖2 using potentials?

Key idea: forget how xk was generated and prove φfk+1 6 φfk .

, only need to study one iteration

/ where does this φfk comes from!? (structure and dependence on k)

Starting point: candidate quadratic φfk with all the available information at iteration k

φfk = ak ‖xk − x?‖2 + bk ‖∇f (xk)‖2 + 2ck 〈∇f (xk), xk − x?〉+ dk (f (xk)− f?).

How to choose ak , bk , ck , dk ’s?

1. choice should satisfy “φfk+1 6 φfk ”,

2. choice should result in bound on ‖∇f (xN)‖2.

22

How does it work for the gradient method?

Given φfk+1, φ
f
k , how to verify that for all L-smooth convex f , xk ∈ Rd , and d ∈ N:

φfk+1 6 φfk?

(notations: the set of such pairs (φfk , φ
f
k+1) is denoted Vk .)

Answer:

φfk+1 6 φfk for all L-smooth convex f , xk ∈ Rd , and d ∈ N
⇔

some small-sized linear matrix inequality (LMI) is feasible.

Furthermore: LMI is linear in parameters {ak , bk , ck , dk}k .

In others words: efficient (convex) representation of Vk available!

23

How does it work for the gradient method?

Given φfk+1, φ
f
k , how to verify that for all L-smooth convex f , xk ∈ Rd , and d ∈ N:

φfk+1 6 φfk?

(notations: the set of such pairs (φfk , φ
f
k+1) is denoted Vk .)

Answer:

φfk+1 6 φfk for all L-smooth convex f , xk ∈ Rd , and d ∈ N
⇔

some small-sized linear matrix inequality (LMI) is feasible.

Furthermore: LMI is linear in parameters {ak , bk , ck , dk}k .

In others words: efficient (convex) representation of Vk available!

23

How does it work for the gradient method?

Given φfk+1, φ
f
k , how to verify that for all L-smooth convex f , xk ∈ Rd , and d ∈ N:

φfk+1 6 φfk?

(notations: the set of such pairs (φfk , φ
f
k+1) is denoted Vk .)

Answer:

φfk+1 6 φfk for all L-smooth convex f , xk ∈ Rd , and d ∈ N
⇔

some small-sized linear matrix inequality (LMI) is feasible.

Furthermore: LMI is linear in parameters {ak , bk , ck , dk}k .

In others words: efficient (convex) representation of Vk available!

23

How does it work for the gradient method?

Given φfk+1, φ
f
k , how to verify that for all L-smooth convex f , xk ∈ Rd , and d ∈ N:

φfk+1 6 φfk?

(notations: the set of such pairs (φfk , φ
f
k+1) is denoted Vk .)

Answer:

φfk+1 6 φfk for all L-smooth convex f , xk ∈ Rd , and d ∈ N
⇔

some small-sized linear matrix inequality (LMI) is feasible.

Furthermore: LMI is linear in parameters {ak , bk , ck , dk}k .

In others words: efficient (convex) representation of Vk available!

23

How does it work for the gradient method?

Given φfk+1, φ
f
k , how to verify that for all L-smooth convex f , xk ∈ Rd , and d ∈ N:

φfk+1 6 φfk?

(notations: the set of such pairs (φfk , φ
f
k+1) is denoted Vk .)

Answer:

φfk+1 6 φfk for all L-smooth convex f , xk ∈ Rd , and d ∈ N
⇔

some small-sized linear matrix inequality (LMI) is feasible.

Furthermore: LMI is linear in parameters {ak , bk , ck , dk}k .

In others words: efficient (convex) representation of Vk available!

23

How does it work for the gradient method?

Recap: we want to bound ‖∇f (xN)‖2; choose

φfk = ak ‖xk − x?‖2 + bk ‖∇f (xk)‖2 + 2ck 〈∇f (xk), xk − x?〉+ dk (f (xk)− f?).

with φf0 = L2‖x0 − x?‖2 and φfN = bN ‖∇f (xN)‖2.

Motivation: this structure would result in ‖∇f (xN)‖2 6 L2‖x0−x?‖2
bN

.

Question: largest provable bN using such potentials?

max
φf

1,...,φ
f
N−1,bN

bN such that (φf0, φ
f
1) ∈ V0, . . . , (φ

f
N−1, φ

f
N) ∈ VN−1

Let’s engineer a worst-case guarantee:

1. Solve the SDP for some values of N.

2. Observe the ak , bk , ck , dk ’s for some values of N.

3. Try to simplify the φfk ’s without loosing too much.

4. Prove target result by analytically playing with Vk (i.e., study single iteration).

24

How does it work for the gradient method?

Recap: we want to bound ‖∇f (xN)‖2; choose

φfk = ak ‖xk − x?‖2 + bk ‖∇f (xk)‖2 + 2ck 〈∇f (xk), xk − x?〉+ dk (f (xk)− f?).

with φf0 = L2‖x0 − x?‖2 and φfN = bN ‖∇f (xN)‖2.

Motivation: this structure would result in ‖∇f (xN)‖2 6 L2‖x0−x?‖2
bN

.

Question: largest provable bN using such potentials?

max
φf

1,...,φ
f
N−1,bN

bN such that (φf0, φ
f
1) ∈ V0, . . . , (φ

f
N−1, φ

f
N) ∈ VN−1

Let’s engineer a worst-case guarantee:

1. Solve the SDP for some values of N.

2. Observe the ak , bk , ck , dk ’s for some values of N.

3. Try to simplify the φfk ’s without loosing too much.

4. Prove target result by analytically playing with Vk (i.e., study single iteration).

24

How does it work for the gradient method?

Recap: we want to bound ‖∇f (xN)‖2; choose

φfk = ak ‖xk − x?‖2 + bk ‖∇f (xk)‖2 + 2ck 〈∇f (xk), xk − x?〉+ dk (f (xk)− f?).

with φf0 = L2‖x0 − x?‖2 and φfN = bN ‖∇f (xN)‖2.

Motivation: this structure would result in ‖∇f (xN)‖2 6 L2‖x0−x?‖2
bN

.

Question: largest provable bN using such potentials?

max
φf

1,...,φ
f
N−1,bN

bN such that (φf0, φ
f
1) ∈ V0, . . . , (φ

f
N−1, φ

f
N) ∈ VN−1

Let’s engineer a worst-case guarantee:

1. Solve the SDP for some values of N.

2. Observe the ak , bk , ck , dk ’s for some values of N.

3. Try to simplify the φfk ’s without loosing too much.

4. Prove target result by analytically playing with Vk (i.e., study single iteration).

24

How does it work for the gradient method?

Recap: we want to bound ‖∇f (xN)‖2; choose

φfk = ak ‖xk − x?‖2 + bk ‖∇f (xk)‖2 + 2ck 〈∇f (xk), xk − x?〉+ dk (f (xk)− f?).

with φf0 = L2‖x0 − x?‖2 and φfN = bN ‖∇f (xN)‖2.

Motivation: this structure would result in ‖∇f (xN)‖2 6 L2‖x0−x?‖2
bN

.

Question: largest provable bN using such potentials?

max
φf

1,...,φ
f
N−1,bN

bN such that (φf0, φ
f
1) ∈ V0, . . . , (φ

f
N−1, φ

f
N) ∈ VN−1

Let’s engineer a worst-case guarantee:

1. Solve the SDP for some values of N.

2. Observe the ak , bk , ck , dk ’s for some values of N.

3. Try to simplify the φfk ’s without loosing too much.

4. Prove target result by analytically playing with Vk (i.e., study single iteration).

24

How does it work for the gradient method?

Recap: we want to bound ‖∇f (xN)‖2; choose

φfk = ak ‖xk − x?‖2 + bk ‖∇f (xk)‖2 + 2ck 〈∇f (xk), xk − x?〉+ dk (f (xk)− f?).

with φf0 = L2‖x0 − x?‖2 and φfN = bN ‖∇f (xN)‖2.

Motivation: this structure would result in ‖∇f (xN)‖2 6 L2‖x0−x?‖2
bN

.

Question: largest provable bN using such potentials?

max
φf

1,...,φ
f
N−1,bN

bN such that (φf0, φ
f
1) ∈ V0, . . . , (φ

f
N−1, φ

f
N) ∈ VN−1

Let’s engineer a worst-case guarantee:

1. Solve the SDP for some values of N.

2. Observe the ak , bk , ck , dk ’s for some values of N.

3. Try to simplify the φfk ’s without loosing too much.

4. Prove target result by analytically playing with Vk (i.e., study single iteration).

24

How does it work for the gradient method?

Recap: we want to bound ‖∇f (xN)‖2; choose

φfk = ak ‖xk − x?‖2 + bk ‖∇f (xk)‖2 + 2ck 〈∇f (xk), xk − x?〉+ dk (f (xk)− f?).

with φf0 = L2‖x0 − x?‖2 and φfN = bN ‖∇f (xN)‖2.

Motivation: this structure would result in ‖∇f (xN)‖2 6 L2‖x0−x?‖2
bN

.

Question: largest provable bN using such potentials?

max
φf

1,...,φ
f
N−1,bN

bN such that (φf0, φ
f
1) ∈ V0, . . . , (φ

f
N−1, φ

f
N) ∈ VN−1

Let’s engineer a worst-case guarantee:

1. Solve the SDP for some values of N.

2. Observe the ak , bk , ck , dk ’s for some values of N.

3. Try to simplify the φfk ’s without loosing too much.

4. Prove target result by analytically playing with Vk (i.e., study single iteration).

24

How does it work for the gradient method?

Recap: we want to bound ‖∇f (xN)‖2; choose

φfk = ak ‖xk − x?‖2 + bk ‖∇f (xk)‖2 + 2ck 〈∇f (xk), xk − x?〉+ dk (f (xk)− f?).

with φf0 = L2‖x0 − x?‖2 and φfN = bN ‖∇f (xN)‖2.

Motivation: this structure would result in ‖∇f (xN)‖2 6 L2‖x0−x?‖2
bN

.

Question: largest provable bN using such potentials?

max
φf

1,...,φ
f
N−1,bN

bN such that (φf0, φ
f
1) ∈ V0, . . . , (φ

f
N−1, φ

f
N) ∈ VN−1

Let’s engineer a worst-case guarantee:

1. Solve the SDP for some values of N.

2. Observe the ak , bk , ck , dk ’s for some values of N.

3. Try to simplify the φfk ’s without loosing too much.

4. Prove target result by analytically playing with Vk (i.e., study single iteration).

24

How does it work for the gradient method?

Recap: we want to bound ‖∇f (xN)‖2; choose

φfk = ak ‖xk − x?‖2 + bk ‖∇f (xk)‖2 + 2ck 〈∇f (xk), xk − x?〉+ dk (f (xk)− f?).

with φf0 = L2‖x0 − x?‖2 and φfN = bN ‖∇f (xN)‖2.

Motivation: this structure would result in ‖∇f (xN)‖2 6 L2‖x0−x?‖2
bN

.

Question: largest provable bN using such potentials?

max
φf

1,...,φ
f
N−1,bN

bN such that (φf0, φ
f
1) ∈ V0, . . . , (φ

f
N−1, φ

f
N) ∈ VN−1

Let’s engineer a worst-case guarantee:

1. Solve the SDP for some values of N.

2. Observe the ak , bk , ck , dk ’s for some values of N.

3. Try to simplify the φfk ’s without loosing too much.

4. Prove target result by analytically playing with Vk (i.e., study single iteration).

24

How does it work for the gradient method?

Recap: we want to bound ‖∇f (xN)‖2; choose

φfk = ak ‖xk − x?‖2 + bk ‖∇f (xk)‖2 + 2ck 〈∇f (xk), xk − x?〉+ dk (f (xk)− f?).

with φf0 = L2‖x0 − x?‖2 and φfN = bN ‖∇f (xN)‖2.

Motivation: this structure would result in ‖∇f (xN)‖2 6 L2‖x0−x?‖2
bN

.

Question: largest provable bN using such potentials?

max
φf

1,...,φ
f
N−1,bN

bN such that (φf0, φ
f
1) ∈ V0, . . . , (φ

f
N−1, φ

f
N) ∈ VN−1

Let’s engineer a worst-case guarantee:

1. Solve the SDP for some values of N.

2. Observe the ak , bk , ck , dk ’s for some values of N.

3. Try to simplify the φfk ’s without loosing too much.

4. Prove target result by analytically playing with Vk (i.e., study single iteration).

24

How does it work for the gradient method?

Recap: we want to bound ‖∇f (xN)‖2; choose

φfk = ak ‖xk − x?‖2 + bk ‖∇f (xk)‖2 + 2ck 〈∇f (xk), xk − x?〉+ dk (f (xk)− f?).

with φf0 = L2‖x0 − x?‖2 and φfN = bN ‖∇f (xN)‖2.

Motivation: this structure would result in ‖∇f (xN)‖2 6 L2‖x0−x?‖2
bN

.

Question: largest provable bN using such potentials?

max
φf

1,...,φ
f
N−1,bN

bN such that (φf0, φ
f
1) ∈ V0, . . . , (φ

f
N−1, φ

f
N) ∈ VN−1

Let’s engineer a worst-case guarantee:

1. Solve the SDP for some values of N.

2. Observe the ak , bk , ck , dk ’s for some values of N.

3. Try to simplify the φfk ’s without loosing too much.

4. Prove target result by analytically playing with Vk (i.e., study single iteration).

24

How does it work for the gradient method?

Recap: we want to bound ‖∇f (xN)‖2; choose

φfk = ak ‖xk − x?‖2 + bk ‖∇f (xk)‖2 + 2ck 〈∇f (xk), xk − x?〉+ dk (f (xk)− f?).

with φf0 = L2‖x0 − x?‖2 and φfN = bN ‖∇f (xN)‖2.

Motivation: this structure would result in ‖∇f (xN)‖2 6 L2‖x0−x?‖2
bN

.

Question: largest provable bN using such potentials?

max
φf

1,...,φ
f
N−1,bN

bN such that (φf0, φ
f
1) ∈ V0, . . . , (φ

f
N−1, φ

f
N) ∈ VN−1

Let’s engineer a worst-case guarantee:

1. Solve the SDP for some values of N.

2. Observe the ak , bk , ck , dk ’s for some values of N.

3. Try to simplify the φfk ’s without loosing too much.

4. Prove target result by analytically playing with Vk (i.e., study single iteration).

24

How does it work for the gradient method?

1. Solve the SDP for some values of N; recall final guarantee of the form:

‖∇f (xN)‖2 6 L2 ‖x0−x?‖2
bN

N =

1 2 3 4 . . . 100

bN =

4 9 16 25 . . . 10201

2. Observe the ak , bk , ck , dk ’s for some values of N.

3. Try to simplify the φfk ’s without loosing too much.
Simplification #1: bk = ck = 0
Simplification #2: ak = L

2
4. Prove target result by analytically playing with Vk :

φfk (xk) =(2k + 1)L(f (xk)− f?) + k(k + 2)‖∇f (xk)‖2 + L2‖xk − x?‖2,

hence fk − f? = O(k−1) and ‖∇f (xk)‖2 = O(k−2).

25

How does it work for the gradient method?

1. Solve the SDP for some values of N; recall final guarantee of the form:

‖∇f (xN)‖2 6 L2 ‖x0−x?‖2
bN

N = 1

2 3 4 . . . 100

bN =

4 9 16 25 . . . 10201

2. Observe the ak , bk , ck , dk ’s for some values of N.

3. Try to simplify the φfk ’s without loosing too much.
Simplification #1: bk = ck = 0
Simplification #2: ak = L

2
4. Prove target result by analytically playing with Vk :

φfk (xk) =(2k + 1)L(f (xk)− f?) + k(k + 2)‖∇f (xk)‖2 + L2‖xk − x?‖2,

hence fk − f? = O(k−1) and ‖∇f (xk)‖2 = O(k−2).

25

How does it work for the gradient method?

1. Solve the SDP for some values of N; recall final guarantee of the form:

‖∇f (xN)‖2 6 L2 ‖x0−x?‖2
bN

N = 1

2 3 4 . . . 100

bN = 4

9 16 25 . . . 10201

2. Observe the ak , bk , ck , dk ’s for some values of N.

3. Try to simplify the φfk ’s without loosing too much.
Simplification #1: bk = ck = 0
Simplification #2: ak = L

2
4. Prove target result by analytically playing with Vk :

φfk (xk) =(2k + 1)L(f (xk)− f?) + k(k + 2)‖∇f (xk)‖2 + L2‖xk − x?‖2,

hence fk − f? = O(k−1) and ‖∇f (xk)‖2 = O(k−2).

25

How does it work for the gradient method?

1. Solve the SDP for some values of N; recall final guarantee of the form:

‖∇f (xN)‖2 6 L2 ‖x0−x?‖2
bN

N = 1 2

3 4 . . . 100

bN = 4 9

16 25 . . . 10201

2. Observe the ak , bk , ck , dk ’s for some values of N.

3. Try to simplify the φfk ’s without loosing too much.
Simplification #1: bk = ck = 0
Simplification #2: ak = L

2
4. Prove target result by analytically playing with Vk :

φfk (xk) =(2k + 1)L(f (xk)− f?) + k(k + 2)‖∇f (xk)‖2 + L2‖xk − x?‖2,

hence fk − f? = O(k−1) and ‖∇f (xk)‖2 = O(k−2).

25

How does it work for the gradient method?

1. Solve the SDP for some values of N; recall final guarantee of the form:

‖∇f (xN)‖2 6 L2 ‖x0−x?‖2
bN

N = 1 2 3

4 . . . 100

bN = 4 9 16

25 . . . 10201

2. Observe the ak , bk , ck , dk ’s for some values of N.

3. Try to simplify the φfk ’s without loosing too much.
Simplification #1: bk = ck = 0
Simplification #2: ak = L

2
4. Prove target result by analytically playing with Vk :

φfk (xk) =(2k + 1)L(f (xk)− f?) + k(k + 2)‖∇f (xk)‖2 + L2‖xk − x?‖2,

hence fk − f? = O(k−1) and ‖∇f (xk)‖2 = O(k−2).

25

How does it work for the gradient method?

1. Solve the SDP for some values of N; recall final guarantee of the form:

‖∇f (xN)‖2 6 L2 ‖x0−x?‖2
bN

N = 1 2 3 4 . . . 100
bN = 4 9 16 25 . . . 10201

2. Observe the ak , bk , ck , dk ’s for some values of N.

3. Try to simplify the φfk ’s without loosing too much.
Simplification #1: bk = ck = 0
Simplification #2: ak = L

2
4. Prove target result by analytically playing with Vk :

φfk (xk) =(2k + 1)L(f (xk)− f?) + k(k + 2)‖∇f (xk)‖2 + L2‖xk − x?‖2,

hence fk − f? = O(k−1) and ‖∇f (xk)‖2 = O(k−2).

25

How does it work for the gradient method?

1. Solve the SDP for some values of N; recall final guarantee of the form:

‖∇f (xN)‖2 6 L2 ‖x0−x?‖2
bN

N = 1 2 3 4 . . . 100
bN = 4 9 16 25 . . . 10201

2. Observe the ak , bk , ck , dk ’s for some values of N.

3. Try to simplify the φfk ’s without loosing too much.
Simplification #1: bk = ck = 0
Simplification #2: ak = L

2
4. Prove target result by analytically playing with Vk :

φfk (xk) =(2k + 1)L(f (xk)− f?) + k(k + 2)‖∇f (xk)‖2 + L2‖xk − x?‖2,

hence fk − f? = O(k−1) and ‖∇f (xk)‖2 = O(k−2).

25

Fixed horizon N = 100, L = 1, and

φfk = ak ‖xk − x?‖2 + bk ‖∇f (xk)‖2 + 2ck 〈∇f (xk), xk − x?〉+ dk (f (xk)− f?).

0 20 40 60 80 100
0

0.5

1

1.5

2

a
k

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1
·104

b
k

0 20 40 60 80 100
−10

−5

0

5

10

c k

0 20 40 60 80 100
0

50

100

150

200

d
k

26

Fixed horizon N = 100, L = 1, and

φfk = ak ‖xk − x?‖2 + bk ‖∇f (xk)‖2 + 2ck 〈∇f (xk), xk − x?〉+ dk (f (xk)− f?).

0 20 40 60 80 100
0

0.5

1

1.5

2
a
k

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1
·104

b
k

0 20 40 60 80 100
−10

−5

0

5

10

c k

0 20 40 60 80 100
0

50

100

150

200

d
k

26

How does it work for the gradient method?

1. Solve the SDP for some values of N; recall final guarantee of the form:

‖∇f (xN)‖2 6 L2 ‖x0−x?‖2
bN

N = 1 2 3 4 . . . 100
bN = 4 9 16 25 . . . 10201

2. Observe the ak , bk , ck , dk ’s for some values of N.

3. Try to simplify the φfk ’s without loosing too much.

27

How does it work for the gradient method?

1. Solve the SDP for some values of N; recall final guarantee of the form:

‖∇f (xN)‖2 6 L2 ‖x0−x?‖2
bN

N = 1 2 3 4 . . . 100
bN = 4 9 16 25 . . . 10201

2. Observe the ak , bk , ck , dk ’s for some values of N.

3. Try to simplify the φfk ’s without loosing too much.

27

Fixed horizon N = 100 and

Vk =

(
xk − x?
∇f (xk)

)> [(
ak ck
ck bk

)
⊗ Id

](
xk − x?
∇f (xk)

)
+ dk (f (xk)− f?)

0 20 40 60 80 100
0

0.5

1

1.5

2
a
k

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1
·104

b
k

0 20 40 60 80 100
−10

−5

0

5

10

c k

0 20 40 60 80 100
0

50

100

150

200

d
k

28

Fixed horizon N = 100 and

Vk =

(
xk − x?
∇f (xk)

)> [(
ak ck
ck bk

)
⊗ Id

](
xk − x?
∇f (xk)

)
+ (2k + 1)L (f (xk)− f?)

0 20 40 60 80 100
0

0.5

1

1.5

2
a
k

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1
·104

b
k

0 20 40 60 80 100
−10

−5

0

5

10

c k

0 20 40 60 80 100
0

50

100

150

200

d
k

28

Fixed horizon N = 100 and

Vk =

(
xk − x?
∇f (xk)

)> [(
L2 0
0 bk

)
⊗ Id

](
xk − x?
∇f (xk)

)
+ (2k + 1)L (f (xk)− f?)

0 20 40 60 80 100
0

0.5

1

1.5

2
a
k

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1
·104

b
k

0 20 40 60 80 100
−10

−5

0

5

10

c k

0 20 40 60 80 100
0

50

100

150

200

d
k

28

Fixed horizon N = 100 and

Vk =

(
xk − x?
∇f (xk)

)> [(
ak ck
ck bk

)
⊗ Id

](
xk − x?
∇f (xk)

)
+ 0 (f (xk)− f?)

0 20 40 60 80 100
0

0.5

1

1.5

2
a
k

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1
·104

b
k

0 20 40 60 80 100
−10

−5

0

5

10

c k

0 20 40 60 80 100
0

50

100

150

200

d
k

28

How does it work for the gradient method?

1. Solve the SDP for some values of N; recall final guarantee of the form:

‖∇f (xN)‖2 6 L2 ‖x0−x?‖2
bN

N = 1 2 3 4 . . . 100
bN = 4 9 16 25 . . . 10201

2. Observe the ak , bk , ck , dk ’s for some values of N.

3. Try to simplify the φfk ’s without loosing too much.
Simplification attempt #1: dk = (2k + 1)L
Simplification attempt #2: ak = L2 and ck = 0
Simplification attempt #3: dk = 0

4. Prove target result by analytically playing with Vk :

φfk (xk) =(2k + 1)L(f (xk)− f?) + k(k + 2)‖∇f (xk)‖2 + L2‖xk − x?‖2,

hence f (xN)− f? = O(N−1) and ‖∇f (xN)‖2 = O(N−2).

29

How does it work for the gradient method?

1. Solve the SDP for some values of N; recall final guarantee of the form:

‖∇f (xN)‖2 6 L2 ‖x0−x?‖2
bN

N = 1 2 3 4 . . . 100
bN = 4 9 16 25 . . . 10201

2. Observe the ak , bk , ck , dk ’s for some values of N.

3. Try to simplify the φfk ’s without loosing too much.
Simplification attempt #1: dk = (2k + 1)L
Simplification attempt #2: ak = L2 and ck = 0
Simplification attempt #3: dk = 0

4. Prove target result by analytically playing with Vk :

φfk (xk) =(2k + 1)L(f (xk)− f?) + k(k + 2)‖∇f (xk)‖2 + L2‖xk − x?‖2,

hence f (xN)− f? = O(N−1) and ‖∇f (xN)‖2 = O(N−2).

29

Lyapunov/potential functions

Allows studying more “complicated” methods:

� stochastic structures,

� randomized structures.

Allows gaining intuitions, examples:

� optimized gradient method,

� triple momentum method,

� information-theoretic exact method.

30

Lyapunov/potential functions

Allows studying more “complicated” methods:

� stochastic structures,

� randomized structures.

Allows gaining intuitions, examples:

� optimized gradient method,

� triple momentum method,

� information-theoretic exact method.

30

Informal link with “full” PEPs?
How does this strategy compare to regular “N-iteration” PEPs?

Example: matrix of dual variables [λi,j]:

� 1-smooth convex minimization, gradient descent with γ = 1,

� worst-case of f (xN)−f?
‖x0−x?‖2 .

0 2 4 6 8 10 12

nz = 121

0

2

4

6

8

10

12

31

Informal link with “full” PEPs?
How does this strategy compare to regular “N-iteration” PEPs?

Example: matrix of dual variables [λi,j]:

� 1-smooth convex minimization, gradient descent with γ = 1,

� worst-case of f (xN)−f?
‖x0−x?‖2 .

0 2 4 6 8 10 12

nz = 121

0

2

4

6

8

10

12

31

Informal link with “full” PEPs?
How does this strategy compare to regular “N-iteration” PEPs?

Example: matrix of dual variables [λi,j]:

� 1-smooth convex minimization, gradient descent with γ = 1,

� worst-case of f (xN)−f?
‖x0−x?‖2 .

0 2 4 6 8 10 12

nz = 121

0

2

4

6

8

10

12

31

Informal link with “full” PEPs?
How does this strategy compare to regular “N-iteration” PEPs?

Example: matrix of dual variables [λi,j]:

� 1-smooth convex minimization, gradient descent with γ = 1,

� worst-case of f (xN)−f?
‖x0−x?‖2 .

0 2 4 6 8 10 12

nz = 121

0

2

4

6

8

10

12

31

Informal link with “full” PEPs?
How does this strategy compare to regular “N-iteration” PEPs?

Example: matrix of dual variables [λi,j]:

� 1-smooth convex minimization, gradient descent with γ = 1,

� worst-case of f (xN)−f?
‖x0−x?‖2 .

0 2 4 6 8 10 12

nz = 121

0

2

4

6

8

10

12

31

Informal link with “full” PEPs?
How does this strategy compare to regular “N-iteration” PEPs?

Example: matrix of dual variables [λi,j]:

� 1-smooth convex minimization, optimized gradient descent,

� worst-case of f (xN)−f?
‖x0−x?‖2 .

0 2 4 6 8 10 12

nz = 21

0

2

4

6

8

10

12

32

Informal link with “full” PEPs?
How does this strategy compare to regular “N-iteration” PEPs?

Example: matrix of dual variables [λi,j]:

� 1-smooth convex minimization, optimized gradient descent,

� worst-case of f (xN)−f?
‖x0−x?‖2 .

0 2 4 6 8 10 12

nz = 21

0

2

4

6

8

10

12

32

Informal link with “full” PEPs?
How does this strategy compare to regular “N-iteration” PEPs?

Example: matrix of dual variables [λi,j]:

� 1-smooth convex minimization, optimized gradient descent,

� worst-case of f (xN)−f?
‖x0−x?‖2 .

0 2 4 6 8 10 12

nz = 21

0

2

4

6

8

10

12

32

Informal link with “full” PEPs?
How does this strategy compare to regular “N-iteration” PEPs?

Example: matrix of dual variables [λi,j]:

� 1-smooth convex minimization, optimized gradient descent,

� worst-case of f (xN)−f?
‖x0−x?‖2 .

0 2 4 6 8 10 12

nz = 21

0

2

4

6

8

10

12

32

More about Lyapunov approaches

“Tight Lyapunov function existence analysis for first-order methods”

Manu
Upadhyaya

Sebastian
Banert Pontus

Giselsson

... tomorrow!

33

More about Lyapunov approaches

“Tight Lyapunov function existence analysis for first-order methods”

Manu
Upadhyaya

Sebastian
Banert Pontus

Giselsson

... tomorrow!

33

More about Lyapunov approaches

“Tight Lyapunov function existence analysis for first-order methods”

Manu
Upadhyaya

Sebastian
Banert Pontus

Giselsson

... tomorrow!

33

Reminders

Notions of simplicity

Designing methods

Concluding remarks

34

Designing methods

Two main PEP-related techniques:

� minimax

� subspace search elimination.

35

Designing methods

Two main PEP-related techniques:

� minimax

� subspace search elimination.

35

Designing methods

Two main PEP-related techniques:

� minimax

� subspace search elimination.

35

Creating new algorithms via minimax approach
Smooth (strongly) convex minimization with more than gradient descent?

x1 = x0 − h1,0∇f (x0)

x2 = x1 − h2,0∇f (x0)− h2,1∇f (x1)

...

xN = xN−1 − hN,0∇f (x0)− . . .− hN,N−1∇f (xN−1)

How to choose {hi,j}?

� pick a performance criterion, for instance

‖xN − x?‖2

‖x0 − x?‖2
,

� solve the minimax:

min
{hi,j}i,j

max
f∈F,{xi}

‖xN − x?‖2

‖x0 − x?‖2
.

36

Creating new algorithms via minimax approach
Smooth (strongly) convex minimization with more than gradient descent?

x1 = x0 − h1,0∇f (x0)

x2 = x1 − h2,0∇f (x0)− h2,1∇f (x1)

...

xN = xN−1 − hN,0∇f (x0)− . . .− hN,N−1∇f (xN−1)

How to choose {hi,j}?

� pick a performance criterion, for instance

‖xN − x?‖2

‖x0 − x?‖2
,

� solve the minimax:

min
{hi,j}i,j

max
f∈F,{xi}

‖xN − x?‖2

‖x0 − x?‖2
.

36

Creating new algorithms via minimax approach
Smooth (strongly) convex minimization with more than gradient descent?

x1 = x0 − h1,0∇f (x0)

x2 = x1 − h2,0∇f (x0)− h2,1∇f (x1)

...

xN = xN−1 − hN,0∇f (x0)− . . .− hN,N−1∇f (xN−1)

How to choose {hi,j}?

� pick a performance criterion, for instance

‖xN − x?‖2

‖x0 − x?‖2
,

� solve the minimax:

min
{hi,j}i,j

max
f∈F,{xi}

‖xN − x?‖2

‖x0 − x?‖2
.

36

Creating new algorithms via minimax approach
Smooth (strongly) convex minimization with more than gradient descent?

x1 = x0 − h1,0∇f (x0)

x2 = x1 − h2,0∇f (x0)− h2,1∇f (x1)

...

xN = xN−1 − hN,0∇f (x0)− . . .− hN,N−1∇f (xN−1)

How to choose {hi,j}?

� pick a performance criterion, for instance

‖xN − x?‖2

‖x0 − x?‖2
,

� solve the minimax:

min
{hi,j}i,j

max
f∈F,{xi}

‖xN − x?‖2

‖x0 − x?‖2
.

36

Creating new algorithms via minimax approach
Smooth (strongly) convex minimization with more than gradient descent?

x1 = x0 − h1,0∇f (x0)

x2 = x1 − h2,0∇f (x0)− h2,1∇f (x1)

...

xN = xN−1 − hN,0∇f (x0)− . . .− hN,N−1∇f (xN−1)

How to choose {hi,j}?

� pick a performance criterion, for instance

‖xN − x?‖2

‖x0 − x?‖2
,

� solve the minimax:

min
{hi,j}i,j

max
f∈F,{xi}

‖xN − x?‖2

‖x0 − x?‖2
.

36

Creating new algorithms via minimax approach
Smooth (strongly) convex minimization with more than gradient descent?

x1 = x0 − h1,0∇f (x0)

x2 = x1 − h2,0∇f (x0)− h2,1∇f (x1)

...

xN = xN−1 − hN,0∇f (x0)− . . .− hN,N−1∇f (xN−1)

How to choose {hi,j}?

� pick a performance criterion, for instance

‖xN − x?‖2

‖x0 − x?‖2
,

� solve the minimax:

min
{hi,j}i,j

max
f∈F,{xi}

‖xN − x?‖2

‖x0 − x?‖2
.

36

Creating new algorithms via minimax approach
Smooth (strongly) convex minimization with more than gradient descent?

x1 = x0 − h1,0∇f (x0)

x2 = x1 − h2,0∇f (x0)− h2,1∇f (x1)

...

xN = xN−1 − hN,0∇f (x0)− . . .− hN,N−1∇f (xN−1)

How to choose {hi,j}?
� pick a performance criterion, for instance

‖xN − x?‖2

‖x0 − x?‖2
,

� solve the minimax:

min
{hi,j}i,j

max
f∈F,{xi}

‖xN − x?‖2

‖x0 − x?‖2
.

36

Creating new algorithms via minimax approach
Smooth (strongly) convex minimization with more than gradient descent?

x1 = x0 − h1,0∇f (x0)

x2 = x1 − h2,0∇f (x0)− h2,1∇f (x1)

...

xN = xN−1 − hN,0∇f (x0)− . . .− hN,N−1∇f (xN−1)

How to choose {hi,j}?
� pick a performance criterion, for instance

‖xN − x?‖2

‖x0 − x?‖2
,

� solve the minimax:

min
{hi,j}i,j

max
f∈F,{xi}

‖xN − x?‖2

‖x0 − x?‖2
.

36

Creating new algorithms via minimax approach

Situation seems quite involved in general, apart from a few cases

� f (xN)−f?
‖x0−x?‖2

with µ = 0: optimized gradient method (OGM, Kim & Fessler 2016),

� ‖xN−x?‖2
‖x0−x?‖2

: information-theoretic exact method (ITEM, T & Drori 2021),

� ‖∇f (xN)‖2
f (x0)−f?

with µ = 0: OGM for gradient (OGM-G, Kim & Fessler 2021).

Relation to quadratics? When specifying f to be quadratic, similar known methods

� f (xN)−f?
‖x0−x?‖2

with µ = 0 (via Chebyshev polynomials),

� ‖xN−x?‖2
‖x0−x?‖2

(via Chebyshev polynomials), asymptotically Polyak’s Heavy-Ball

� see e.g.: A. Nemirovsky’s “Information-based complexity of convex
programming.” (lecture notes, 1995)

37

Creating new algorithms via minimax approach

Situation seems quite involved in general, apart from a few cases

� f (xN)−f?
‖x0−x?‖2

with µ = 0: optimized gradient method (OGM, Kim & Fessler 2016),

� ‖xN−x?‖2
‖x0−x?‖2

: information-theoretic exact method (ITEM, T & Drori 2021),

� ‖∇f (xN)‖2
f (x0)−f?

with µ = 0: OGM for gradient (OGM-G, Kim & Fessler 2021).

Relation to quadratics? When specifying f to be quadratic, similar known methods

� f (xN)−f?
‖x0−x?‖2

with µ = 0 (via Chebyshev polynomials),

� ‖xN−x?‖2
‖x0−x?‖2

(via Chebyshev polynomials), asymptotically Polyak’s Heavy-Ball

� see e.g.: A. Nemirovsky’s “Information-based complexity of convex
programming.” (lecture notes, 1995)

37

Creating new algorithms via minimax approach

Situation seems quite involved in general, apart from a few cases

� f (xN)−f?
‖x0−x?‖2

with µ = 0: optimized gradient method (OGM, Kim & Fessler 2016),

� ‖xN−x?‖2
‖x0−x?‖2

: information-theoretic exact method (ITEM, T & Drori 2021),

� ‖∇f (xN)‖2
f (x0)−f?

with µ = 0: OGM for gradient (OGM-G, Kim & Fessler 2021).

Relation to quadratics? When specifying f to be quadratic, similar known methods

� f (xN)−f?
‖x0−x?‖2

with µ = 0 (via Chebyshev polynomials),

� ‖xN−x?‖2
‖x0−x?‖2

(via Chebyshev polynomials), asymptotically Polyak’s Heavy-Ball

� see e.g.: A. Nemirovsky’s “Information-based complexity of convex
programming.” (lecture notes, 1995)

37

Creating new algorithms via minimax approach

Situation seems quite involved in general, apart from a few cases

� f (xN)−f?
‖x0−x?‖2

with µ = 0: optimized gradient method (OGM, Kim & Fessler 2016),

� ‖xN−x?‖2
‖x0−x?‖2

: information-theoretic exact method (ITEM, T & Drori 2021),

� ‖∇f (xN)‖2
f (x0)−f?

with µ = 0: OGM for gradient (OGM-G, Kim & Fessler 2021).

Relation to quadratics? When specifying f to be quadratic, similar known methods

� f (xN)−f?
‖x0−x?‖2

with µ = 0 (via Chebyshev polynomials),

� ‖xN−x?‖2
‖x0−x?‖2

(via Chebyshev polynomials), asymptotically Polyak’s Heavy-Ball

� see e.g.: A. Nemirovsky’s “Information-based complexity of convex
programming.” (lecture notes, 1995)

37

Creating new algorithms via minimax approach

Situation seems quite involved in general, apart from a few cases

� f (xN)−f?
‖x0−x?‖2

with µ = 0: optimized gradient method (OGM, Kim & Fessler 2016),

� ‖xN−x?‖2
‖x0−x?‖2

: information-theoretic exact method (ITEM, T & Drori 2021),

� ‖∇f (xN)‖2
f (x0)−f?

with µ = 0: OGM for gradient (OGM-G, Kim & Fessler 2021).

Relation to quadratics? When specifying f to be quadratic, similar known methods

� f (xN)−f?
‖x0−x?‖2

with µ = 0 (via Chebyshev polynomials),

� ‖xN−x?‖2
‖x0−x?‖2

(via Chebyshev polynomials), asymptotically Polyak’s Heavy-Ball

� see e.g.: A. Nemirovsky’s “Information-based complexity of convex
programming.” (lecture notes, 1995)

37

Creating new algorithms via minimax approach

Situation seems quite involved in general, apart from a few cases

� f (xN)−f?
‖x0−x?‖2

with µ = 0: optimized gradient method (OGM, Kim & Fessler 2016),

� ‖xN−x?‖2
‖x0−x?‖2

: information-theoretic exact method (ITEM, T & Drori 2021),

� ‖∇f (xN)‖2
f (x0)−f?

with µ = 0: OGM for gradient (OGM-G, Kim & Fessler 2021).

Relation to quadratics? When specifying f to be quadratic, similar known methods

� f (xN)−f?
‖x0−x?‖2

with µ = 0 (via Chebyshev polynomials),

� ‖xN−x?‖2
‖x0−x?‖2

(via Chebyshev polynomials), asymptotically Polyak’s Heavy-Ball

� see e.g.: A. Nemirovsky’s “Information-based complexity of convex
programming.” (lecture notes, 1995)

37

Creating new algorithms via minimax approach

Situation seems quite involved in general, apart from a few cases

� f (xN)−f?
‖x0−x?‖2

with µ = 0: optimized gradient method (OGM, Kim & Fessler 2016),

� ‖xN−x?‖2
‖x0−x?‖2

: information-theoretic exact method (ITEM, T & Drori 2021),

� ‖∇f (xN)‖2
f (x0)−f?

with µ = 0: OGM for gradient (OGM-G, Kim & Fessler 2021).

Relation to quadratics? When specifying f to be quadratic, similar known methods

� f (xN)−f?
‖x0−x?‖2

with µ = 0 (via Chebyshev polynomials),

� ‖xN−x?‖2
‖x0−x?‖2

(via Chebyshev polynomials), asymptotically Polyak’s Heavy-Ball

� see e.g.: A. Nemirovsky’s “Information-based complexity of convex
programming.” (lecture notes, 1995)

37

Creating new algorithms via minimax approach

Situation seems quite involved in general, apart from a few cases

� f (xN)−f?
‖x0−x?‖2

with µ = 0: optimized gradient method (OGM, Kim & Fessler 2016),

� ‖xN−x?‖2
‖x0−x?‖2

: information-theoretic exact method (ITEM, T & Drori 2021),

� ‖∇f (xN)‖2
f (x0)−f?

with µ = 0: OGM for gradient (OGM-G, Kim & Fessler 2021).

Relation to quadratics? When specifying f to be quadratic, similar known methods

� f (xN)−f?
‖x0−x?‖2

with µ = 0 (via Chebyshev polynomials),

� ‖xN−x?‖2
‖x0−x?‖2

(via Chebyshev polynomials), asymptotically Polyak’s Heavy-Ball

� see e.g.: A. Nemirovsky’s “Information-based complexity of convex
programming.” (lecture notes, 1995)

37

Creating new algorithms via minimax approach

Other examples of methods constructed using the minimax approach:

� Kim (2021). “Optimizing the efficiency of first-order methods for decreasing the
gradient of smooth convex functions”.

� Park, Ryu (2022). “Exact optimal accelerated complexity for fixed-point
iterations”.

New methodology:

� Das Gupta, Van Parijs, Ryu (2022). “Branch-and-Bound Performance
Estimation Programming: A Unified Methodology for Constructing Optimal
Optimization Methods”.

38

Creating new algorithms via minimax approach

Other examples of methods constructed using the minimax approach:

� Kim (2021). “Optimizing the efficiency of first-order methods for decreasing the
gradient of smooth convex functions”.

� Park, Ryu (2022). “Exact optimal accelerated complexity for fixed-point
iterations”.

New methodology:

� Das Gupta, Van Parijs, Ryu (2022). “Branch-and-Bound Performance
Estimation Programming: A Unified Methodology for Constructing Optimal
Optimization Methods”.

38

Creating new algorithms via minimax approach

Other examples of methods constructed using the minimax approach:

� Kim (2021). “Optimizing the efficiency of first-order methods for decreasing the
gradient of smooth convex functions”.

� Park, Ryu (2022). “Exact optimal accelerated complexity for fixed-point
iterations”.

New methodology:

� Das Gupta, Van Parijs, Ryu (2022). “Branch-and-Bound Performance
Estimation Programming: A Unified Methodology for Constructing Optimal
Optimization Methods”.

38

Subspace search elimination

For choosing step sizes {hi,j}, study greedy method:

Greedy First-order Method (GFOM)
Inputs: f , x0.

For i = 1, 2, . . .

xi ∈ argmin
x∈Rd

{f (x) : x ∈ x0 + span{∇f (x0), . . . ,∇f (xi−1)}} .

Running example: solve
min
x∈Rd

f (x)

with f ∈ Fµ,L (L-smooth µ-strongly convex).

39

Subspace search elimination

For choosing step sizes {hi,j}, study greedy method:

Greedy First-order Method (GFOM)
Inputs: f , x0.

For i = 1, 2, . . .

xi ∈ argmin
x∈Rd

{f (x) : x ∈ x0 + span{∇f (x0), . . . ,∇f (xi−1)}} .

Running example: solve
min
x∈Rd

f (x)

with f ∈ Fµ,L (L-smooth µ-strongly convex).

39

Subspace search elimination

For choosing step sizes {hi,j}, study greedy method:

Gradient method with exact line search
Inputs: f , x0.

For i = 1, 2, . . .

xi ∈ argmin
x∈Rd

{f (x) : x ∈ xi−1 + span{∇f (xi−1)}} .

Running example: solve
min
x∈Rd

f (x)

with f ∈ Fµ,L (L-smooth µ-strongly convex).

39

Subspace search elimination

For choosing step sizes {hi,j}, study greedy method:

Gradient method with exact line search
Inputs: f , x0.

For i = 1, 2, . . .

xi ∈ argmin
x∈Rd

{f (x) : x ∈ xi−1 + span{∇f (xi−1)}} .

Running example: solve
min
x∈Rd

f (x)

with f ∈ Fµ,L (L-smooth µ-strongly convex).

39

Subspace search elimination

For choosing step sizes {hi,j}, study greedy method:

Gradient method with exact line search
Inputs: f , x0.

For i = 1, 2, . . .

xi ∈ argmin
x∈Rd

{f (x) : x ∈ xi−1 + span{∇f (xi−1)}} .

Running example: solve
min
x∈Rd

f (x)

with f ∈ Fµ,L (L-smooth µ-strongly convex).

39

Exact line-search or optimal fixed step size?
The convergence rate can be written as

ρ
(def)

= max
x0,x1,f∈Fµ,L

{
f1 − f?

f0 − f?
st 〈∇f (x1),∇f (x0)〉 = 0, 〈∇f (x1), x1 − x0〉 = 0

}
,

it can be upper bounded using a Lagrangian relaxation with λ1, λ2 ∈ R:

ρ6ρ̄(λ1, λ2)
(def)

= max
x0,x1,f∈Fµ,L

{
f1 − f?

f0 − f?
+ λ1〈∇f (x1),∇f (x0)〉+ λ2〈∇f (x1), x1 − x0〉

}
.

We can also create an intermediary problem

ρ 6

max
x0,x1,f∈Fµ,L

{
f1 − f?

f0 − f?
st λ1〈∇f (x1),∇f (x0)〉+ λ2〈∇f (x1), x1 − x0〉 = 0

}

6 ρ̄(λ1, λ2).

So: worst-case rate ρ̄(λ1, λ2) applies to all methods described by:

〈∇f (x1), λ1∇f (x0) + λ2(x1 − x0)〉 = 0.

If there exists λ?1 , λ
?
2 6= 0 such that ρ = ρ̄(λ?1 , λ

?
2), an optimal step size is given by λ?1

λ?2
.

40

Exact line-search or optimal fixed step size?
The convergence rate can be written as

ρ
(def)

= max
x0,x1,f∈Fµ,L

{
f1 − f?

f0 − f?
st 〈∇f (x1),∇f (x0)〉 = 0, 〈∇f (x1), x1 − x0〉 = 0

}
,

it can be upper bounded using a Lagrangian relaxation with λ1, λ2 ∈ R:

ρ6ρ̄(λ1, λ2)
(def)

= max
x0,x1,f∈Fµ,L

{
f1 − f?

f0 − f?
+ λ1〈∇f (x1),∇f (x0)〉+ λ2〈∇f (x1), x1 − x0〉

}
.

We can also create an intermediary problem

ρ 6

max
x0,x1,f∈Fµ,L

{
f1 − f?

f0 − f?
st λ1〈∇f (x1),∇f (x0)〉+ λ2〈∇f (x1), x1 − x0〉 = 0

}

6 ρ̄(λ1, λ2).

So: worst-case rate ρ̄(λ1, λ2) applies to all methods described by:

〈∇f (x1), λ1∇f (x0) + λ2(x1 − x0)〉 = 0.

If there exists λ?1 , λ
?
2 6= 0 such that ρ = ρ̄(λ?1 , λ

?
2), an optimal step size is given by λ?1

λ?2
.

40

Exact line-search or optimal fixed step size?
The convergence rate can be written as

ρ
(def)

= max
x0,x1,f∈Fµ,L

{
f1 − f?

f0 − f?
st 〈∇f (x1),∇f (x0)〉 = 0, 〈∇f (x1), x1 − x0〉 = 0

}
,

it can be upper bounded using a Lagrangian relaxation with λ1, λ2 ∈ R:

ρ6ρ̄(λ1, λ2)
(def)

= max
x0,x1,f∈Fµ,L

{
f1 − f?

f0 − f?
+ λ1〈∇f (x1),∇f (x0)〉+ λ2〈∇f (x1), x1 − x0〉

}
.

We can also create an intermediary problem

ρ 6

max
x0,x1,f∈Fµ,L

{
f1 − f?

f0 − f?
st λ1〈∇f (x1),∇f (x0)〉+ λ2〈∇f (x1), x1 − x0〉 = 0

}

6 ρ̄(λ1, λ2).

So: worst-case rate ρ̄(λ1, λ2) applies to all methods described by:

〈∇f (x1), λ1∇f (x0) + λ2(x1 − x0)〉 = 0.

If there exists λ?1 , λ
?
2 6= 0 such that ρ = ρ̄(λ?1 , λ

?
2), an optimal step size is given by λ?1

λ?2
.

40

Exact line-search or optimal fixed step size?
The convergence rate can be written as

ρ
(def)

= max
x0,x1,f∈Fµ,L

{
f1 − f?

f0 − f?
st 〈∇f (x1),∇f (x0)〉 = 0, 〈∇f (x1), x1 − x0〉 = 0

}
,

it can be upper bounded using a Lagrangian relaxation with λ1, λ2 ∈ R:

ρ6ρ̄(λ1, λ2)
(def)

= max
x0,x1,f∈Fµ,L

{
f1 − f?

f0 − f?
+ λ1〈∇f (x1),∇f (x0)〉+ λ2〈∇f (x1), x1 − x0〉

}
.

We can also create an intermediary problem

ρ 6

max
x0,x1,f∈Fµ,L

{
f1 − f?

f0 − f?
st λ1〈∇f (x1),∇f (x0)〉+ λ2〈∇f (x1), x1 − x0〉 = 0

}

6 ρ̄(λ1, λ2).

So: worst-case rate ρ̄(λ1, λ2) applies to all methods described by:

〈∇f (x1), λ1∇f (x0) + λ2(x1 − x0)〉 = 0.

If there exists λ?1 , λ
?
2 6= 0 such that ρ = ρ̄(λ?1 , λ

?
2), an optimal step size is given by λ?1

λ?2
.

40

Exact line-search or optimal fixed step size?
The convergence rate can be written as

ρ
(def)

= max
x0,x1,f∈Fµ,L

{
f1 − f?

f0 − f?
st 〈∇f (x1),∇f (x0)〉 = 0, 〈∇f (x1), x1 − x0〉 = 0

}
,

it can be upper bounded using a Lagrangian relaxation with λ1, λ2 ∈ R:

ρ6ρ̄(λ1, λ2)
(def)

= max
x0,x1,f∈Fµ,L

{
f1 − f?

f0 − f?
+ λ1〈∇f (x1),∇f (x0)〉+ λ2〈∇f (x1), x1 − x0〉

}
.

We can also create an intermediary problem

ρ 6 max
x0,x1,f∈Fµ,L

{
f1 − f?

f0 − f?
st λ1〈∇f (x1),∇f (x0)〉+ λ2〈∇f (x1), x1 − x0〉 = 0

}
6 ρ̄(λ1, λ2).

So: worst-case rate ρ̄(λ1, λ2) applies to all methods described by:

〈∇f (x1), λ1∇f (x0) + λ2(x1 − x0)〉 = 0.

If there exists λ?1 , λ
?
2 6= 0 such that ρ = ρ̄(λ?1 , λ

?
2), an optimal step size is given by λ?1

λ?2
.

40

Exact line-search or optimal fixed step size?
The convergence rate can be written as

ρ
(def)

= max
x0,x1,f∈Fµ,L

{
f1 − f?

f0 − f?
st 〈∇f (x1),∇f (x0)〉 = 0, 〈∇f (x1), x1 − x0〉 = 0

}
,

it can be upper bounded using a Lagrangian relaxation with λ1, λ2 ∈ R:

ρ6ρ̄(λ1, λ2)
(def)

= max
x0,x1,f∈Fµ,L

{
f1 − f?

f0 − f?
+ λ1〈∇f (x1),∇f (x0)〉+ λ2〈∇f (x1), x1 − x0〉

}
.

We can also create an intermediary problem

ρ 6 max
x0,x1,f∈Fµ,L

{
f1 − f?

f0 − f?
st λ1〈∇f (x1),∇f (x0)〉+ λ2〈∇f (x1), x1 − x0〉 = 0

}
6 ρ̄(λ1, λ2).

So: worst-case rate ρ̄(λ1, λ2) applies to all methods described by:

〈∇f (x1), λ1∇f (x0) + λ2(x1 − x0)〉 = 0.

If there exists λ?1 , λ
?
2 6= 0 such that ρ = ρ̄(λ?1 , λ

?
2), an optimal step size is given by λ?1

λ?2
.

40

Exact line-search or optimal fixed step size?
The convergence rate can be written as

ρ
(def)

= max
x0,x1,f∈Fµ,L

{
f1 − f?

f0 − f?
st 〈∇f (x1),∇f (x0)〉 = 0, 〈∇f (x1), x1 − x0〉 = 0

}
,

it can be upper bounded using a Lagrangian relaxation with λ1, λ2 ∈ R:

ρ6ρ̄(λ1, λ2)
(def)

= max
x0,x1,f∈Fµ,L

{
f1 − f?

f0 − f?
+ λ1〈∇f (x1),∇f (x0)〉+ λ2〈∇f (x1), x1 − x0〉

}
.

We can also create an intermediary problem

ρ 6 max
x0,x1,f∈Fµ,L

{
f1 − f?

f0 − f?
st λ1〈∇f (x1),∇f (x0)〉+ λ2〈∇f (x1), x1 − x0〉 = 0

}
6 ρ̄(λ1, λ2).

So: worst-case rate ρ̄(λ1, λ2) applies to all methods described by:

〈∇f (x1), λ1∇f (x0) + λ2(x1 − x0)〉 = 0.

If there exists λ?1 , λ
?
2 6= 0 such that ρ = ρ̄(λ?1 , λ

?
2), an optimal step size is given by λ?1

λ?2
.

40

Example: non-smooth convex minimization

Non-smooth convex minimization setting:

min
x∈Rd

f (x)

with f convex and ‖g‖ 6 M for any g ∈ ∂f (x) for some x ∈ R.

Lower bound for large-scale setting (d > N + 2):

f (xN)− f (x?) >
M‖x0 − x?‖2√

N + 1
.

41

Example: non-smooth convex minimization

Non-smooth convex minimization setting:

min
x∈Rd

f (x)

with f convex and ‖g‖ 6 M for any g ∈ ∂f (x) for some x ∈ R.

Lower bound for large-scale setting (d > N + 2):

f (xN)− f (x?) >
M‖x0 − x?‖2√

N + 1
.

41

Example: non-smooth convex minimization

� Let {xi}i>0 be a sequence generated by GFOM from f and x0, and let x0 be
such that R = ‖x0 − x?‖ for some x?; then for all N ∈ N

f (xN)− f (x?) 6
MR
√
N + 1

.

� For any sequence x1, . . . , xN that satisfies

〈
∇f (xi), xi −

 i

i + 1
xi−1 +

1
i + 1

x0 −
1

i + 1
R

M
√
N + 1

i−1∑
j=0

∇f (xj)

〉 = 0

for all i = 1, . . . ,N, we have

f (xN)− f (x?) 6
MR
√
N + 1

.

42

Example: non-smooth convex minimization

� Let {xi}i>0 be a sequence generated by GFOM from f and x0, and let x0 be
such that R = ‖x0 − x?‖ for some x?; then for all N ∈ N

f (xN)− f (x?) 6
MR
√
N + 1

.

� For any sequence x1, . . . , xN that satisfies

〈
∇f (xi), xi −

 i

i + 1
xi−1 +

1
i + 1

x0 −
1

i + 1
R

M
√
N + 1

i−1∑
j=0

∇f (xj)

〉 = 0

for all i = 1, . . . ,N, we have

f (xN)− f (x?) 6
MR
√
N + 1

.

42

Example: non-smooth convex minimization
Three methods with the same (optimal) worst-case behavior

Greedy First-order Method (GFOM)
Inputs: f , x0, N.

For i = 1, . . . ,N
xi = argmin

x∈Rd

{f (x) : x ∈ x0 + span{∇f (x0), . . . ,∇f (xi−1)}} .

Worst-case guarantee:

f (xN)− f (x?) 6
M‖x0 − x?‖2√

N + 1
.

43

Example: non-smooth convex minimization
Three methods with the same (optimal) worst-case behavior

Optimized subgradient method with exact line-search
Inputs: f , x0, N.

For i = 1, . . . ,N

yi =
i

i + 1
xi−1 +

1
i + 1

x0

di =

i−1∑
j=0

∇f (xj)

α = argmin
α∈R

f (yi + αdi)

xi = yi + αdi

Worst-case guarantee:

f (xN)− f (x?) 6
M‖x0 − x?‖2√

N + 1
.

44

Example: non-smooth convex minimization
Three methods with the same (optimal) worst-case behavior

Optimized subgradient method
Inputs: f , x0, N.

For i = 1, . . . ,N

yi = x0 −
1

√
N + 1

R

M

i−1∑
j=0

∇f (xj)

xi =
i

i + 1
xi−1 +

1
i + 1

yi

Worst-case guarantee:

f (xN)− f (x?) 6
M‖x0 − x?‖2√

N + 1
.

45

Example: smooth convex minimization

Smooth convex minimization setting:

min
x∈Rd

f (x)

with f being L-smooth and convex.

Lower bound for large-scale setting (d > N + 2) by Drori (2017):

f (xN)− f (x?) >
L‖x0 − x?‖2

2θ2N
,

with θ0 = 1, and:

θi+1 =

1+

√
4θ2i +1
2 if i 6 N − 2,

1+
√

8θ2i +1
2 if i = N − 1.

46

Example: smooth convex minimization

Smooth convex minimization setting:

min
x∈Rd

f (x)

with f being L-smooth and convex.

Lower bound for large-scale setting (d > N + 2) by Drori (2017):

f (xN)− f (x?) >
L‖x0 − x?‖2

2θ2N
,

with θ0 = 1, and:

θi+1 =

1+

√
4θ2i +1
2 if i 6 N − 2,

1+
√

8θ2i +1
2 if i = N − 1.

46

Example: smooth convex minimization
Three methods with the same (optimal) worst-case behavior

Greedy First-order Method (GFOM)
Inputs: f , x0, N.

For i = 1, 2, . . .
xi = argmin

x∈Rd

{f (x) : x ∈ x0 + span{∇f (x0), . . . ,∇f (xi−1)}} .

Worst-case guarantee:

f (xN)− f (x?) 6
L‖x0 − x?‖2

2θ2N
.

47

Example: smooth convex minimization
Three methods with the same (optimal) worst-case behavior

Optimized gradient method with exact line-search
Inputs: f , x0, N.

For i = 1, . . . ,N

yi =

(
1−

1
θi

)
xi−1 +

1
θi
x0

di =

(
1−

1
θi

)
∇f (xi−1) +

1
θi

2
i−1∑
j=0

θj∇f (xj)

α = argmin

α∈R
f (yi + αdi)

xi = yi + αdi

Worst-case guarantee:

f (xN)− f (x?) 6
L‖x0 − x?‖2

2θ2N
.

48

Example: smooth convex minimization
Three methods with the same (optimal) worst-case behavior

Optimized gradient method
Inputs: f , x0, N.

For i = 1, . . . ,N

yi = xi−1 −
1
L
∇f (xi−1)

zi = x0 −
2
L

i−1∑
j=0

θj∇f (xj)

xi =

(
1−

1
θi

)
yi +

1
θi
zi

Worst-case guarantee:

f (xN)− f (x?) 6
L‖x0 − x?‖2

2θ2N
.

See Drori and Teboulle (2014) and Kim and Fessler (2016).

49

Creating new algorithms via subspace search elimination

Methods & methodology:

� de Klerk, Glineur, T (2017). “On the worst-case complexity of the gradient
method with exact line search for smooth strongly convex functions”.

� Drori, T (2020). “Efficient first-order methods for convex minimization: a
constructive approach”.

50

Creating new algorithms via subspace search elimination

Methods & methodology:

� de Klerk, Glineur, T (2017). “On the worst-case complexity of the gradient
method with exact line search for smooth strongly convex functions”.

� Drori, T (2020). “Efficient first-order methods for convex minimization: a
constructive approach”.

50

Reminders

Notions of simplicity

Designing methods

Concluding remarks

51

Perspectives on PEPs

� Systematic access on complexity analyses,

� obtain natural proofs/wc examples,

� identify minimal assumptions,

� use convex relaxations (tightness is comfortable, but not required),

� study/develop methods beyond traditional comfort zones, for
instance:

− non-Euclidean setups,
− adaptive methods,
− higher-order methods.

52

Perspectives on PEPs

� Systematic access on complexity analyses,

� obtain natural proofs/wc examples,

� identify minimal assumptions,

� use convex relaxations (tightness is comfortable, but not required),

� study/develop methods beyond traditional comfort zones, for
instance:

− non-Euclidean setups,
− adaptive methods,
− higher-order methods.

52

Perspectives on PEPs

� Systematic access on complexity analyses,

� obtain natural proofs/wc examples,

� identify minimal assumptions,

� use convex relaxations (tightness is comfortable, but not required),

� study/develop methods beyond traditional comfort zones, for
instance:

− non-Euclidean setups,
− adaptive methods,
− higher-order methods.

52

Perspectives on PEPs

� Systematic access on complexity analyses,

� obtain natural proofs/wc examples,

� identify minimal assumptions,

� use convex relaxations (tightness is comfortable, but not required),

� study/develop methods beyond traditional comfort zones, for
instance:

− non-Euclidean setups,
− adaptive methods,
− higher-order methods.

52

Perspectives on PEPs

� Systematic access on complexity analyses,

� obtain natural proofs/wc examples,

� identify minimal assumptions,

� use convex relaxations (tightness is comfortable, but not required),

� study/develop methods beyond traditional comfort zones, for
instance:

− non-Euclidean setups,
− adaptive methods,
− higher-order methods.

52

A few other instructive examples

Worst-case analysis for fixed-point iterations:

� Lieder (2020). “On the convergence of the Halpern-iteration”.

Analysis of the proximal-point algorithm for monotone inclusions:

� Gu, Yang (2019). “Optimal nonergodic sublinear convergence rate of the
proximal point algorithm for maximal monotone inclusion problems”.

Application to designing first-order methods:

� Van Scoy, Freeman, Lynch (2017). “The fastest known globally convergent
first-order method for minimizing strongly convex functions”.

Application to nonconvex optimization:

� Abbaszadehpeivasti, de Klerk, Zamani (2021). “The exact worst-case
convergence rate of the gradient method with fixed step lengths for L-smooth
functions”.

� Rotaru, Glineur, Patrinos (2022). “Tight convergence rates of the gradient
method on hypoconvex functions”.

Application to distributed optimization:

� Colla, Hendrickx (2021). “Automated Worst-Case Performance Analysis of
Decentralized Gradient Descent”.

53

A few other instructive examples

Worst-case analysis for fixed-point iterations:

� Lieder (2020). “On the convergence of the Halpern-iteration”.

Analysis of the proximal-point algorithm for monotone inclusions:

� Gu, Yang (2019). “Optimal nonergodic sublinear convergence rate of the
proximal point algorithm for maximal monotone inclusion problems”.

Application to designing first-order methods:

� Van Scoy, Freeman, Lynch (2017). “The fastest known globally convergent
first-order method for minimizing strongly convex functions”.

Application to nonconvex optimization:

� Abbaszadehpeivasti, de Klerk, Zamani (2021). “The exact worst-case
convergence rate of the gradient method with fixed step lengths for L-smooth
functions”.

� Rotaru, Glineur, Patrinos (2022). “Tight convergence rates of the gradient
method on hypoconvex functions”.

Application to distributed optimization:

� Colla, Hendrickx (2021). “Automated Worst-Case Performance Analysis of
Decentralized Gradient Descent”.

53

A few other instructive examples

Worst-case analysis for fixed-point iterations:

� Lieder (2020). “On the convergence of the Halpern-iteration”.

Analysis of the proximal-point algorithm for monotone inclusions:

� Gu, Yang (2019). “Optimal nonergodic sublinear convergence rate of the
proximal point algorithm for maximal monotone inclusion problems”.

Application to designing first-order methods:

� Van Scoy, Freeman, Lynch (2017). “The fastest known globally convergent
first-order method for minimizing strongly convex functions”.

Application to nonconvex optimization:

� Abbaszadehpeivasti, de Klerk, Zamani (2021). “The exact worst-case
convergence rate of the gradient method with fixed step lengths for L-smooth
functions”.

� Rotaru, Glineur, Patrinos (2022). “Tight convergence rates of the gradient
method on hypoconvex functions”.

Application to distributed optimization:

� Colla, Hendrickx (2021). “Automated Worst-Case Performance Analysis of
Decentralized Gradient Descent”.

53

A few other instructive examples

Worst-case analysis for fixed-point iterations:

� Lieder (2020). “On the convergence of the Halpern-iteration”.

Analysis of the proximal-point algorithm for monotone inclusions:

� Gu, Yang (2019). “Optimal nonergodic sublinear convergence rate of the
proximal point algorithm for maximal monotone inclusion problems”.

Application to designing first-order methods:

� Van Scoy, Freeman, Lynch (2017). “The fastest known globally convergent
first-order method for minimizing strongly convex functions”.

Application to nonconvex optimization:

� Abbaszadehpeivasti, de Klerk, Zamani (2021). “The exact worst-case
convergence rate of the gradient method with fixed step lengths for L-smooth
functions”.

� Rotaru, Glineur, Patrinos (2022). “Tight convergence rates of the gradient
method on hypoconvex functions”.

Application to distributed optimization:

� Colla, Hendrickx (2021). “Automated Worst-Case Performance Analysis of
Decentralized Gradient Descent”.

53

Shameless advertisement

Application to Bregman methods:

� Dragomir, T, d’Aspremont, Bolte (2021). “Optimal complexity and certification
of Bregman first-order methods”.

Continuous-time PEPs:

� Moucer, T, Bach (2022). “A systematic approach to Lyapunov analyses of
continuous-time models in convex optimization”.

Application to finding minimal working assumptions:

� Goujaud, T, Dieuleveut (2022). ‘Optimal first-order methods for convex
functions with a quadratic upper bound”.

Application to extragradient-type methods:

� Gorbunov, T, Gidel. “Last-iterate convergence of optimistic gradient method for
monotone variational inequalities”.

Application to adaptive first-order methods:

� Barré, T, Aspremont (2020). “Complexity Guarantees for Polyak Steps with
Momentum”.

� Das Gupta, Freund, Sun, T (2023). “Nonlinear conjugate gradient methods:
worst-case convergence rates via computer-assisted analyses”.

54

Shameless advertisement

Application to Bregman methods:

� Dragomir, T, d’Aspremont, Bolte (2021). “Optimal complexity and certification
of Bregman first-order methods”.

Continuous-time PEPs:

� Moucer, T, Bach (2022). “A systematic approach to Lyapunov analyses of
continuous-time models in convex optimization”.

Application to finding minimal working assumptions:

� Goujaud, T, Dieuleveut (2022). ‘Optimal first-order methods for convex
functions with a quadratic upper bound”.

Application to extragradient-type methods:

� Gorbunov, T, Gidel. “Last-iterate convergence of optimistic gradient method for
monotone variational inequalities”.

Application to adaptive first-order methods:

� Barré, T, Aspremont (2020). “Complexity Guarantees for Polyak Steps with
Momentum”.

� Das Gupta, Freund, Sun, T (2023). “Nonlinear conjugate gradient methods:
worst-case convergence rates via computer-assisted analyses”.

54

Shameless advertisement

Application to Bregman methods:

� Dragomir, T, d’Aspremont, Bolte (2021). “Optimal complexity and certification
of Bregman first-order methods”.

Continuous-time PEPs:

� Moucer, T, Bach (2022). “A systematic approach to Lyapunov analyses of
continuous-time models in convex optimization”.

Application to finding minimal working assumptions:

� Goujaud, T, Dieuleveut (2022). ‘Optimal first-order methods for convex
functions with a quadratic upper bound”.

Application to extragradient-type methods:

� Gorbunov, T, Gidel. “Last-iterate convergence of optimistic gradient method for
monotone variational inequalities”.

Application to adaptive first-order methods:

� Barré, T, Aspremont (2020). “Complexity Guarantees for Polyak Steps with
Momentum”.

� Das Gupta, Freund, Sun, T (2023). “Nonlinear conjugate gradient methods:
worst-case convergence rates via computer-assisted analyses”.

54

Shameless advertisement

Application to Bregman methods:

� Dragomir, T, d’Aspremont, Bolte (2021). “Optimal complexity and certification
of Bregman first-order methods”.

Continuous-time PEPs:

� Moucer, T, Bach (2022). “A systematic approach to Lyapunov analyses of
continuous-time models in convex optimization”.

Application to finding minimal working assumptions:

� Goujaud, T, Dieuleveut (2022). ‘Optimal first-order methods for convex
functions with a quadratic upper bound”.

Application to extragradient-type methods:

� Gorbunov, T, Gidel. “Last-iterate convergence of optimistic gradient method for
monotone variational inequalities”.

Application to adaptive first-order methods:

� Barré, T, Aspremont (2020). “Complexity Guarantees for Polyak Steps with
Momentum”.

� Das Gupta, Freund, Sun, T (2023). “Nonlinear conjugate gradient methods:
worst-case convergence rates via computer-assisted analyses”.

54

Shameless advertisement

Application to Bregman methods:

� Dragomir, T, d’Aspremont, Bolte (2021). “Optimal complexity and certification
of Bregman first-order methods”.

Continuous-time PEPs:

� Moucer, T, Bach (2022). “A systematic approach to Lyapunov analyses of
continuous-time models in convex optimization”.

Application to finding minimal working assumptions:

� Goujaud, T, Dieuleveut (2022). ‘Optimal first-order methods for convex
functions with a quadratic upper bound”.

Application to extragradient-type methods:

� Gorbunov, T, Gidel. “Last-iterate convergence of optimistic gradient method for
monotone variational inequalities”.

Application to adaptive first-order methods:

� Barré, T, Aspremont (2020). “Complexity Guarantees for Polyak Steps with
Momentum”.

� Das Gupta, Freund, Sun, T (2023). “Nonlinear conjugate gradient methods:
worst-case convergence rates via computer-assisted analyses”.

54

Main references

� T, Hendrickx, Glineur (2017). “Smooth strongly convex interpolation and exact
worst-case performance of first-order methods”.

� T, Bach (2019). “Stochastic first-order methods: non-asymptotic and
computer-aided analyses via potential functions”.

� Drori, T (2020). “Efficient first-order methods for convex minimization: a
constructive approach”.

Packages:

� T, Hendrickx, Glineur (2017). “Performance estimation toolbox (PESTO):
Automated worst-case analysis of first-order optimization methods”.

� Goujaud et al (2022). “PEPit: computer-assisted worst-case analyses of
first-order optimization methods in Python”.

55

Thanks! Questions?
On Github:

PerformanceEstimation/Performance-Estimation-Toolbox

PerformanceEstimation/PEPit

	Reminders
	Notions of simplicity
	Designing methods
	Concluding remarks

