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Overview of this talk

� PEPs: quick recap, problem formulation, notations,

� PEPs: learning outcomes,

� notions of simplicity (for proofs and worst-case examples),

� creating new methods.
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Please contribute!

� Put your examples/contributions in one of the packages!
− in Matlab: PESTO,
− in Python: PEPit.

� Don’t hesitate to use/contribute to “learning PEPs”:
− Learning-Performance-Estimation.

� We are happy to treat your pull requests!
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https://github.com/PerformanceEstimation/Performance-Estimation-Toolbox
https://pepit.readthedocs.io/en/0.2.1/
https://github.com/PerformanceEstimation/Learning-Performance-Estimation


Genealogy (“my humble, biased, view on...”)

Base methodological developments:

’14 Drori and Teboulle: upper bounds on worst-case behaviors of FO methods via
SDP. Problems scale with number of iterations (NxN SDP matrices).

’16 Kim and Fessler: design of an optimized method for smooth convex
minimization, using SDPs.

’16 Lessard, Recht, Packard: smaller SDPs for linear convergence, via integral
quadratic constraints (“IQCs”). Essentially Lyapunov functions.

This presentation: mainly points of view from

’17 T, Hendrickx and Glineur: “principled formulations” + tightness (via
interpolation/extensions).

’19 T, Bach: potential functions. Essentially: try to “force” simpler proofs.

’20, ’22 Drori, T: Constructive approaches to optimal first-order methods.
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Example: analysis of a gradient method

Find x? ∈ Rd such that

f (x?) = min
x∈Rd

f (x),

with f ∈ Fµ,L (L-smooth µ-strongly convex).

(Gradient method) We decide to use: xk+1 = xk − γk∇f (xk)

Question: what a priori guarantees after N iterations?

Examples: what about f (xN)− f (x?), ‖∇f (xN)‖, ‖xN − x?‖?
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About the assumptions
Consider a differentiable function f : Rd → R, f is (µ-strongly) convex
and L-smooth iff ∀x , y ∈ Rd we have:

x

f

•

(1) (Convexity) f (x) > f (y) + 〈∇f (y), x − y〉,

(1b) (µ-strong convexity) f (x) > f (y) + 〈∇f (y), x − y〉+ µ
2 ‖x − y‖2,

(2) (L-smoothness) ‖∇f (x)−∇f (y)‖ 6 L‖x − y‖,

(2b) (L-smoothness) f (x) 6 f (y) + 〈∇f (y), x − y〉+ L
2‖x − y‖2.
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Convergence rate of a gradient step

'

&

$

%

Toy example: What is the smallest τ such that:

‖x1 − x?‖2 6 τ‖x0 − x?‖2,

for all

� L-smooth and µ-strongly convex function f (notation f ∈ Fµ,L),
� x0, and x1 generated by gradient step x1 = x0 − γ0∇f (x0),

� x? = argmin
x

f (x)?

First: let’s compute τ !

τ = max
f ,x0,x1,x?

‖x1 − x?‖2

‖x0 − x?‖2

s.t. f ∈ Fµ,L Functional class

x1 = x0 − γ0∇f (x0) Algorithm

∇f (x?) = 0 Optimality of x?

Variables: f , x0, x1, x?; parameters: µ, L, γ0.
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Sampled version

� Performance estimation problem:

max
f ,x0,x1,x?

‖x1 − x0‖2

‖x0 − x?‖2

subject to f is L-smooth and µ-strongly convex,

x1 = x0 − γ0∇f (x0)

∇f (x?) = 0.

� Variables: f , x0, x1, x?.

� Sampled version: f is only used at x0 and x? (no need to sample other points)

max
x0,x1,x?
g0,g?
f0,f?

‖x1 − x0‖2

‖x0 − x?‖2

subject to ∃f ∈ Fµ,L such that
{

fi = f (xi ) i = 0, ?
gi = ∇f (xi ) i = 0, ?

x1 = x0 − γ0g0

g? = 0.

� Variables: x0, x1, x?, g0, g?, f0, f?.
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Smooth strongly convex interpolation (or extension)
Consider an index set S, and its associated values {(xi , gi , fi )}i∈S with coordinates xi ,
(sub)gradients gi and function values fi .

x

f

•
x0 •

x2

•
x1

? Possible to find f ∈ Fµ,L such that

f (xi ) = fi , and gi ∈ ∂f (xi ), ∀i ∈ S.

- Necessary and sufficient condition: ∀i , j ∈ S

fi > fj +
〈
gj , xi − xj

〉
+ 1

2L

∥∥gi − gj
∥∥2

+ µ
2(1−µ/L)

∥∥xi − xj − 1
L

(gi − gj )
∥∥2
.

- Simpler example: pick µ = 0 and L =∞ (just convexity):

fi > fj +
〈
gj , xi − xj

〉
.
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fi > fj +
〈
gj , xi − xj

〉
+ 1

2L

∥∥gi − gj
∥∥2

+ µ
2(1−µ/L)

∥∥xi − xj − 1
L

(gi − gj )
∥∥2
.

- Simpler example: pick µ = 0 and L =∞ (just convexity):

fi > fj +
〈
gj , xi − xj

〉
.
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Replace constraints

� Interpolation conditions allow removing red constraints

max
x0,x1,x?
g0,g?
f0,f?

‖x1 − x?‖2

‖x0 − x?‖2

subject to ∃f ∈ Fµ,L such that
{

fi = f (xi ) i = 0, ?
gi = ∇f (xi ) i = 0, ?

x1 = x0 − γ0g0

g? = 0,

� replacing them by

f? > f0 + 〈g0, x? − x0〉+ 1
2L‖g? − g0‖2 + µ

2(1−µ/L)

∥∥x? − x0 − 1
L

(g? − g0)
∥∥2

f0 > f? + 〈g?, x0 − x?〉+ 1
2L‖g0 − g?‖2 + µ

2(1−µ/L)

∥∥x0 − x? − 1
L

(g0 − g?)
∥∥2
.

� Same optimal value (no relaxation); but still non-convex quadratic problem.
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Semidefinite lifting

� Using the new variables G < 0 and F

G =

[
‖x0 − x?‖2 〈g0, x0 − x?〉
〈g0, x0 − x?〉 ‖g0‖2

]
, F = f0 − f?,

� previous problem can be reformulated as a 2× 2 SDP

max
G , F

G1,1 + γ2
0G2,2 − 2γ0G1,2

G1,1

subject to F + Lµ
2(L−µ)

G1,1 + 1
2(L−µ)

G2,2 − L
L−µG1,2 6 0

− F + Lµ
2(L−µ)

G1,1 + 1
2(L−µ)

G2,2 − µ
L−µG1,2 6 0

G1,1 = 1

G < 0,

(using an an homogeneity argument and substituting x1 and g?).

� Assuming x0, x?, g0 ∈ Rd with d > 2, same optimal value as original problem!

� For d = 1 same as original problem by adding rank(G) 6 1.
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Dual problem
� Dual problem is

min
τ,λ1,λ2>0

τ

subject to S =

[
τ − 1 + λ1Lµ

L−µ γ0 − λ1(µ+L)
2(L−µ)

γ0 − λ1(µ+L)
2(L−µ)

λ1
L−µ − γ

2
0

]
< 0

0 = λ1 − λ2.

� Weak duality: any dual feasible point ≡ valid worst-case convergence rate

(⇑).

� Direct consequence: for any τ > 0 we have#

"

 

!

‖x1 − x?‖2 6 τ‖x0 − x?‖2 for all f ∈ Fµ,L, all x0 ∈ Rd , all d ∈ N,
with x1 = x0 − γ0∇f (x0).~ww

∃λ > 0 :

[
τ − 1 + λLµ

L−µ γ0 − λ(µ+L)
2(L−µ)

γ0 − λ(µ+L)
2(L−µ)

λ
L−µ − γ

2
0

]
< 0

� Strong duality holds (existence of a Slater point): any valid worst-case
convergence rate ≡ valid dual feasible point (⇓)

: hence “m”

.
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Translation to worst-case guarantees

� Summary: we can compute for the smallest τ(γ0) such that

‖x1 − x?‖2 6 τ(γ0)‖x0 − x?‖2

is satisfied for all x0 ∈ Rd , d ∈ N, f ∈ Fµ,L, and
x1 = x0 − γ0∇f (x0).

� Feasible points to SDP correspond to lower bounds on τ(γ0).

� Feasible points to dual SDP correspond to upper bounds on τ(γ0).

� Therefore:

− proof via linear combinations of interpolation inequalities
(evaluated at the iterates and x?),

− proofs can be rewritten as a “sum-of-squares” certificates.
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When does it work?

The methodology applies, as is, as soon as:

� performance measure and initial condition are linear in G ,

� interpolation inequalities are linear in G ,

� algorithm can be described linearly in G .

This applies to a variety of scenarios (as we discuss in the workshop).

� check PEPit and PESTO (currently more than 75 examples);

� add yours ,.
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A few natural questions

� What happens if one ingredient is not “nice” in G?

− we can try convex relaxations,
− for instance: no interpolation condition:

add all inequalities you are aware of,
not necessarily evaluated only at the iterates and x?.

� Can we obtain “simple proofs” and worst-case examples?

� How to optimize the step sizes?
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Recap’

, Worst-case guarantees cannot be improved, systematic approach,

, allows reaching proofs that could barely be obtained by hand,

, fair amount of scenarios/algorithms (e.g., proximal terms,
stochastic, etc.),

/ SDPs typically become prohibitively large in a variety of scenarios,

/ transient behavior VS. asymptotic behavior: might be hard to
distinguish with small N,

/ proofs (may be) quite involved and hard to intuit,

/ proofs (may be) hard to generalize.
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Reminders

Notions of simplicity

Designing methods

Concluding remarks
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Simple counter-examples & proofs?

What is a simple counter-example?

� low-dimensional,
� “simple” closed-form?

What is a simple proof? Tentative answers:

� uses few inequalities,
� has few residual term (low-rank dual matrix),
� has a nice structure (e.g., recursive)?
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Low-dimensional examples

Two tricks:

� minimize rank via trace heuristic: minimize Tr(G ),
� minimize rank via logdet heuristic: minimize log det(G ).

Examples in PEPit!
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Nice proof structure: Lyapunov/potential functions

Guarantees for gradient descent when minimizing an L-smooth convex function

f? = min
x∈Rd

f (x)?

Known that f (xN)− f? = O( 1
N

) with small enough step sizes (e.g., 1
L
).

For all L-smooth convex f , xk ∈ Rd , and k > 0, easy to show φfk+1 6 φfk with

φfk = k(f (xk )− f?) + L
2‖xk − x?‖2 (potential at iteration k),

see e.g., (Bansal & Gupta 2017).

Why is that nice? Very simple resulting proof:

N(f (xN)− f?) 6 φfN 6 φfN−1 6 . . . 6 φf0 = L
2‖x0 − x?‖2,

hence: f (xN)− f? 6 L‖x0−x?‖2
2N .
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How does it work for the gradient method?
Gradient descent, take II: how to bound ‖∇f (xN)‖2 using potentials?

Key idea: forget how xk was generated and prove φfk+1 6 φfk .

, only need to study one iteration

/ where does this φfk comes from!? (structure and dependence on k)

Starting point: candidate quadratic φfk with all the available information at iteration k

φfk = ak ‖xk − x?‖2 + bk ‖∇f (xk )‖2 + 2ck 〈∇f (xk ), xk − x?〉+ dk (f (xk )− f?).

How to choose ak , bk , ck , dk ’s?

1. choice should satisfy “φfk+1 6 φfk ”,

2. choice should result in bound on ‖∇f (xN)‖2.
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How does it work for the gradient method?

Given φfk+1, φ
f
k , how to verify that for all L-smooth convex f , xk ∈ Rd , and d ∈ N:

φfk+1 6 φfk?

(notations: the set of such pairs (φfk , φ
f
k+1) is denoted Vk .)

Answer:

φfk+1 6 φfk for all L-smooth convex f , xk ∈ Rd , and d ∈ N
⇔

some small-sized linear matrix inequality (LMI) is feasible.

Furthermore: LMI is linear in parameters {ak , bk , ck , dk}k .

In others words: efficient (convex) representation of Vk available!
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How does it work for the gradient method?

Recap: we want to bound ‖∇f (xN)‖2; choose

φfk = ak ‖xk − x?‖2 + bk ‖∇f (xk )‖2 + 2ck 〈∇f (xk ), xk − x?〉+ dk (f (xk )− f?).

with φf0 = L2‖x0 − x?‖2 and φfN = bN ‖∇f (xN)‖2.

Motivation: this structure would result in ‖∇f (xN)‖2 6 L2‖x0−x?‖2
bN

.

Question: largest provable bN using such potentials?

max
φf

1,...,φ
f
N−1,bN

bN such that (φf0, φ
f
1) ∈ V0, . . . , (φ

f
N−1, φ

f
N) ∈ VN−1

Let’s engineer a worst-case guarantee:

1. Solve the SDP for some values of N.

2. Observe the ak , bk , ck , dk ’s for some values of N.

3. Try to simplify the φfk ’s without loosing too much.

4. Prove target result by analytically playing with Vk (i.e., study single iteration).
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with φf0 = L2‖x0 − x?‖2 and φfN = bN ‖∇f (xN)‖2.

Motivation: this structure would result in ‖∇f (xN)‖2 6 L2‖x0−x?‖2
bN

.

Question: largest provable bN using such potentials?

max
φf

1,...,φ
f
N−1,bN

bN such that (φf0, φ
f
1) ∈ V0, . . . , (φ

f
N−1, φ

f
N) ∈ VN−1

Let’s engineer a worst-case guarantee:

1. Solve the SDP for some values of N.

2. Observe the ak , bk , ck , dk ’s for some values of N.

3. Try to simplify the φfk ’s without loosing too much.

4. Prove target result by analytically playing with Vk (i.e., study single iteration).
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How does it work for the gradient method?

1. Solve the SDP for some values of N; recall final guarantee of the form:

‖∇f (xN)‖2 6 L2 ‖x0−x?‖2
bN

N =

1 2 3 4 . . . 100

bN =

4 9 16 25 . . . 10201

2. Observe the ak , bk , ck , dk ’s for some values of N.

3. Try to simplify the φfk ’s without loosing too much.
Simplification #1: bk = ck = 0
Simplification #2: ak = L

2
4. Prove target result by analytically playing with Vk :

φfk (xk ) =(2k + 1)L(f (xk )− f?) + k(k + 2)‖∇f (xk )‖2 + L2‖xk − x?‖2,

hence fk − f? = O(k−1) and ‖∇f (xk )‖2 = O(k−2).
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Fixed horizon N = 100, L = 1, and

φfk = ak ‖xk − x?‖2 + bk ‖∇f (xk )‖2 + 2ck 〈∇f (xk ), xk − x?〉+ dk (f (xk )− f?).
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How does it work for the gradient method?

1. Solve the SDP for some values of N; recall final guarantee of the form:
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2. Observe the ak , bk , ck , dk ’s for some values of N.

3. Try to simplify the φfk ’s without loosing too much.
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Fixed horizon N = 100 and

Vk =

(
xk − x?
∇f (xk )

)> [(
ak ck
ck bk

)
⊗ Id

](
xk − x?
∇f (xk )

)
+ dk (f (xk )− f?)
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How does it work for the gradient method?

1. Solve the SDP for some values of N; recall final guarantee of the form:

‖∇f (xN)‖2 6 L2 ‖x0−x?‖2
bN

N = 1 2 3 4 . . . 100
bN = 4 9 16 25 . . . 10201

2. Observe the ak , bk , ck , dk ’s for some values of N.

3. Try to simplify the φfk ’s without loosing too much.
Simplification attempt #1: dk = (2k + 1)L
Simplification attempt #2: ak = L2 and ck = 0
Simplification attempt #3: dk = 0

4. Prove target result by analytically playing with Vk :

φfk (xk ) =(2k + 1)L(f (xk )− f?) + k(k + 2)‖∇f (xk )‖2 + L2‖xk − x?‖2,

hence f (xN)− f? = O(N−1) and ‖∇f (xN)‖2 = O(N−2).
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Lyapunov/potential functions

Allows studying more “complicated” methods:

� stochastic structures,

� randomized structures.

Allows gaining intuitions, examples:

� optimized gradient method,

� triple momentum method,

� information-theoretic exact method.
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Informal link with “full” PEPs?
How does this strategy compare to regular “N-iteration” PEPs?

Example: matrix of dual variables [λi,j ]:

� 1-smooth convex minimization, gradient descent with γ = 1,

� worst-case of f (xN )−f?
‖x0−x?‖2 .
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Informal link with “full” PEPs?
How does this strategy compare to regular “N-iteration” PEPs?

Example: matrix of dual variables [λi,j ]:
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� worst-case of f (xN )−f?
‖x0−x?‖2 .
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More about Lyapunov approaches

“Tight Lyapunov function existence analysis for first-order methods”

Manu
Upadhyaya

Sebastian
Banert Pontus

Giselsson

... tomorrow!
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Reminders

Notions of simplicity

Designing methods

Concluding remarks
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Designing methods

Two main PEP-related techniques:

� minimax

� subspace search elimination.
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Creating new algorithms via minimax approach
Smooth (strongly) convex minimization with more than gradient descent?

x1 = x0 − h1,0∇f (x0)

x2 = x1 − h2,0∇f (x0)− h2,1∇f (x1)

...

xN = xN−1 − hN,0∇f (x0)− . . .− hN,N−1∇f (xN−1)

How to choose {hi,j}?

� pick a performance criterion, for instance

‖xN − x?‖2

‖x0 − x?‖2
,

� solve the minimax:

min
{hi,j}i,j

max
f∈F,{xi}

‖xN − x?‖2

‖x0 − x?‖2
.
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Creating new algorithms via minimax approach

Situation seems quite involved in general, apart from a few cases

� f (xN )−f?
‖x0−x?‖2

with µ = 0: optimized gradient method (OGM, Kim & Fessler 2016),

� ‖xN−x?‖2
‖x0−x?‖2

: information-theoretic exact method (ITEM, T & Drori 2021),

� ‖∇f (xN )‖2
f (x0)−f?

with µ = 0: OGM for gradient (OGM-G, Kim & Fessler 2021).

Relation to quadratics? When specifying f to be quadratic, similar known methods

� f (xN )−f?
‖x0−x?‖2

with µ = 0 (via Chebyshev polynomials),

� ‖xN−x?‖2
‖x0−x?‖2

(via Chebyshev polynomials), asymptotically Polyak’s Heavy-Ball

� see e.g.: A. Nemirovsky’s “Information-based complexity of convex
programming.” (lecture notes, 1995)
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Creating new algorithms via minimax approach

Other examples of methods constructed using the minimax approach:

� Kim (2021). “Optimizing the efficiency of first-order methods for decreasing the
gradient of smooth convex functions”.

� Park, Ryu (2022). “Exact optimal accelerated complexity for fixed-point
iterations”.

New methodology:

� Das Gupta, Van Parijs, Ryu (2022). “Branch-and-Bound Performance
Estimation Programming: A Unified Methodology for Constructing Optimal
Optimization Methods”.
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Subspace search elimination

For choosing step sizes {hi,j}, study greedy method:

Greedy First-order Method (GFOM)
Inputs: f , x0.

For i = 1, 2, . . .

xi ∈ argmin
x∈Rd

{f (x) : x ∈ x0 + span{∇f (x0), . . . ,∇f (xi−1)}} .

Running example: solve
min
x∈Rd

f (x)

with f ∈ Fµ,L (L-smooth µ-strongly convex).
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Exact line-search or optimal fixed step size?
The convergence rate can be written as

ρ
(def)

= max
x0,x1,f∈Fµ,L

{
f1 − f?

f0 − f?
st 〈∇f (x1),∇f (x0)〉 = 0, 〈∇f (x1), x1 − x0〉 = 0

}
,

it can be upper bounded using a Lagrangian relaxation with λ1, λ2 ∈ R:

ρ6ρ̄(λ1, λ2)
(def)

= max
x0,x1,f∈Fµ,L

{
f1 − f?

f0 − f?
+ λ1〈∇f (x1),∇f (x0)〉+ λ2〈∇f (x1), x1 − x0〉

}
.

We can also create an intermediary problem

ρ 6

max
x0,x1,f∈Fµ,L

{
f1 − f?

f0 − f?
st λ1〈∇f (x1),∇f (x0)〉+ λ2〈∇f (x1), x1 − x0〉 = 0

}

6 ρ̄(λ1, λ2).

So: worst-case rate ρ̄(λ1, λ2) applies to all methods described by:

〈∇f (x1), λ1∇f (x0) + λ2(x1 − x0)〉 = 0.

If there exists λ?1 , λ
?
2 6= 0 such that ρ = ρ̄(λ?1 , λ

?
2), an optimal step size is given by λ?1

λ?2
.
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Example: non-smooth convex minimization

Non-smooth convex minimization setting:

min
x∈Rd

f (x)

with f convex and ‖g‖ 6 M for any g ∈ ∂f (x) for some x ∈ R.

Lower bound for large-scale setting (d > N + 2):

f (xN)− f (x?) >
M‖x0 − x?‖2√

N + 1
.
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Example: non-smooth convex minimization

� Let {xi}i>0 be a sequence generated by GFOM from f and x0, and let x0 be
such that R = ‖x0 − x?‖ for some x?; then for all N ∈ N

f (xN)− f (x?) 6
MR
√
N + 1

.

� For any sequence x1, . . . , xN that satisfies

〈
∇f (xi ), xi −

 i

i + 1
xi−1 +

1
i + 1

x0 −
1

i + 1
R

M
√
N + 1

i−1∑
j=0

∇f (xj )

〉 = 0

for all i = 1, . . . ,N, we have

f (xN)− f (x?) 6
MR
√
N + 1

.
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Example: non-smooth convex minimization
Three methods with the same (optimal) worst-case behavior

Greedy First-order Method (GFOM)
Inputs: f , x0, N.

For i = 1, . . . ,N
xi = argmin

x∈Rd

{f (x) : x ∈ x0 + span{∇f (x0), . . . ,∇f (xi−1)}} .

Worst-case guarantee:

f (xN)− f (x?) 6
M‖x0 − x?‖2√

N + 1
.
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Example: non-smooth convex minimization
Three methods with the same (optimal) worst-case behavior

Optimized subgradient method with exact line-search
Inputs: f , x0, N.

For i = 1, . . . ,N

yi =
i

i + 1
xi−1 +

1
i + 1

x0

di =

i−1∑
j=0

∇f (xj )

α = argmin
α∈R

f (yi + αdi )

xi = yi + αdi

Worst-case guarantee:

f (xN)− f (x?) 6
M‖x0 − x?‖2√

N + 1
.
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Example: non-smooth convex minimization
Three methods with the same (optimal) worst-case behavior

Optimized subgradient method
Inputs: f , x0, N.

For i = 1, . . . ,N

yi = x0 −
1

√
N + 1

R

M

i−1∑
j=0

∇f (xj )

xi =
i

i + 1
xi−1 +

1
i + 1

yi

Worst-case guarantee:

f (xN)− f (x?) 6
M‖x0 − x?‖2√

N + 1
.
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Example: smooth convex minimization

Smooth convex minimization setting:

min
x∈Rd

f (x)

with f being L-smooth and convex.

Lower bound for large-scale setting (d > N + 2) by Drori (2017):

f (xN)− f (x?) >
L‖x0 − x?‖2

2θ2N
,

with θ0 = 1, and:

θi+1 =


1+

√
4θ2i +1
2 if i 6 N − 2,

1+
√

8θ2i +1
2 if i = N − 1.
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Example: smooth convex minimization

Smooth convex minimization setting:

min
x∈Rd

f (x)
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Example: smooth convex minimization
Three methods with the same (optimal) worst-case behavior

Greedy First-order Method (GFOM)
Inputs: f , x0, N.

For i = 1, 2, . . .
xi = argmin

x∈Rd

{f (x) : x ∈ x0 + span{∇f (x0), . . . ,∇f (xi−1)}} .

Worst-case guarantee:

f (xN)− f (x?) 6
L‖x0 − x?‖2

2θ2N
.
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Example: smooth convex minimization
Three methods with the same (optimal) worst-case behavior

Optimized gradient method with exact line-search
Inputs: f , x0, N.

For i = 1, . . . ,N

yi =

(
1−

1
θi

)
xi−1 +

1
θi
x0

di =

(
1−

1
θi

)
∇f (xi−1) +

1
θi

2
i−1∑
j=0

θj∇f (xj )


α = argmin

α∈R
f (yi + αdi )

xi = yi + αdi

Worst-case guarantee:

f (xN)− f (x?) 6
L‖x0 − x?‖2

2θ2N
.
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Example: smooth convex minimization
Three methods with the same (optimal) worst-case behavior

Optimized gradient method
Inputs: f , x0, N.

For i = 1, . . . ,N

yi = xi−1 −
1
L
∇f (xi−1)

zi = x0 −
2
L

i−1∑
j=0

θj∇f (xj )

xi =

(
1−

1
θi

)
yi +

1
θi
zi

Worst-case guarantee:

f (xN)− f (x?) 6
L‖x0 − x?‖2

2θ2N
.

See Drori and Teboulle (2014) and Kim and Fessler (2016).
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Creating new algorithms via subspace search elimination

Methods & methodology:

� de Klerk, Glineur, T (2017). “On the worst-case complexity of the gradient
method with exact line search for smooth strongly convex functions”.

� Drori, T (2020). “Efficient first-order methods for convex minimization: a
constructive approach”.
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Reminders

Notions of simplicity

Designing methods

Concluding remarks
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Perspectives on PEPs

� Systematic access on complexity analyses,

� obtain natural proofs/wc examples,

� identify minimal assumptions,

� use convex relaxations (tightness is comfortable, but not required),

� study/develop methods beyond traditional comfort zones, for
instance:

− non-Euclidean setups,
− adaptive methods,
− higher-order methods.
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A few other instructive examples

Worst-case analysis for fixed-point iterations:

� Lieder (2020). “On the convergence of the Halpern-iteration”.

Analysis of the proximal-point algorithm for monotone inclusions:

� Gu, Yang (2019). “Optimal nonergodic sublinear convergence rate of the
proximal point algorithm for maximal monotone inclusion problems”.

Application to designing first-order methods:

� Van Scoy, Freeman, Lynch (2017). “The fastest known globally convergent
first-order method for minimizing strongly convex functions”.

Application to nonconvex optimization:

� Abbaszadehpeivasti, de Klerk, Zamani (2021). “The exact worst-case
convergence rate of the gradient method with fixed step lengths for L-smooth
functions”.

� Rotaru, Glineur, Patrinos (2022). “Tight convergence rates of the gradient
method on hypoconvex functions”.

Application to distributed optimization:

� Colla, Hendrickx (2021). “Automated Worst-Case Performance Analysis of
Decentralized Gradient Descent”.
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Shameless advertisement

Application to Bregman methods:

� Dragomir, T, d’Aspremont, Bolte (2021). “Optimal complexity and certification
of Bregman first-order methods”.

Continuous-time PEPs:

� Moucer, T, Bach (2022). “A systematic approach to Lyapunov analyses of
continuous-time models in convex optimization”.

Application to finding minimal working assumptions:

� Goujaud, T, Dieuleveut (2022). ‘Optimal first-order methods for convex
functions with a quadratic upper bound”.

Application to extragradient-type methods:

� Gorbunov, T, Gidel. “Last-iterate convergence of optimistic gradient method for
monotone variational inequalities”.

Application to adaptive first-order methods:

� Barré, T, Aspremont (2020). “Complexity Guarantees for Polyak Steps with
Momentum”.

� Das Gupta, Freund, Sun, T (2023). “Nonlinear conjugate gradient methods:
worst-case convergence rates via computer-assisted analyses”.
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Main references

� T, Hendrickx, Glineur (2017). “Smooth strongly convex interpolation and exact
worst-case performance of first-order methods”.

� T, Bach (2019). “Stochastic first-order methods: non-asymptotic and
computer-aided analyses via potential functions”.

� Drori, T (2020). “Efficient first-order methods for convex minimization: a
constructive approach”.

Packages:

� T, Hendrickx, Glineur (2017). “Performance estimation toolbox (PESTO):
Automated worst-case analysis of first-order optimization methods”.

� Goujaud et al (2022). “PEPit: computer-assisted worst-case analyses of
first-order optimization methods in Python”.

55



Thanks! Questions?
On Github:

PerformanceEstimation/Performance-Estimation-Toolbox

PerformanceEstimation/PEPit
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